Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 23061, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155275

RESUMEN

Suboptimal vaccine response is a significant concern in patients with Inflammatory Bowel Disease (IBD) receiving biologic drugs. This single-center observational study involved 754 patients with IBD. In Phase I (October 2020-April 2021), 754 IBD participants who had not previously received the SARS-CoV-2 vaccine, underwent blood extraction to assess the seroprevalence of SARS-CoV-2 infection and IBD-related factors. Phase II (May 2021-October 2021) included a subgroup of 52 IBD participants with confirmed previous SARS-CoV-2 infection, who were studied for humoral and cellular response to the SARS-CoV-2 vaccine. In Phase I, treatment with anti-TNF was associated with lower rates of seroconversion (aOR 0.25 95% CI [0.10-0.61]). In Phase II, a significant increase in post-vaccination IgG levels was observed regardless of biologic treatment. However, patients treated with anti-TNF exhibited significantly lower IgG levels compared to those without IBD therapy (5.32 ± 2.47 vs. 7.99 ± 2.59 U/ml, p = 0.042). Following vaccination, a lymphocyte, monocyte, and NK cell activation pattern was observed, with no significant differences between patients receiving biologic drugs and those without IBD treatment. Despite lower seroprevalence and humoral response to the SARS-CoV-2 vaccine in patients treated with anti-TNF, the cellular response to the vaccine did not differ significantly from that patients without IBD therapy.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Humanos , Vacunas contra la COVID-19 , Estudios Seroepidemiológicos , Inhibidores del Factor de Necrosis Tumoral , SARS-CoV-2 , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Vacunación , Inmunoglobulina G
2.
FASEB J ; 35(10): e21911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34551152

RESUMEN

Pleiotrophin is a pleiotropic cytokine that has been demonstrated to have a critical role in regulating energy metabolism, lipid turnover and plasticity of adipose tissue. Here, we hypothesize that this cytokine can be involved in regulatory processes of glucose and lipid homeostasis in the liver during pregnancy. Using 18-days pregnant Ptn-deficient mice, we evaluated the biochemical profile (circulating variables), tissue mRNA expression (qPCR) and protein levels of key enzymes and transcription factors involved in main metabolic pathways. Ptn deletion was associated with a reduction in body weight gain, hyperglycemia and glucose intolerance. Moreover, we observed an impairment in glucose synthesis and degradation during late pregnancy in Ptn-/- mice. Hepatic lipid content was significantly lower (73.6%) in Ptn-/- mice and was associated with a clear reduction in fatty acid, triacylglycerides and cholesterol synthesis. Ptn deletion was accompanying with a diabetogenic state in the mother and a decreased expression of key proteins involved in glucose and lipid uptake and metabolism. Moreover, Ptn-/- pregnant mice have a decreased expression of transcription factors, such as PPAR-α, regulating lipid uptake and glucose and lipid utilization. Furthermore, the augmented expression and nuclear translocation of glycerol kinase, and the decrease in NUR77 protein levels in the knock-out animals can further explain the alterations observed in hepatic glucose metabolism. Our results point out for the first time that pleiotrophin is an important player in maintaining hepatic metabolic homeostasis during late gestation, and further highlighted the moonlighting role of glycerol kinase in the regulation of maternal glucose homeostasis during pregnancy.


Asunto(s)
Proteínas Portadoras/genética , Citocinas/deficiencia , Citocinas/genética , Eliminación de Gen , Intolerancia a la Glucosa/genética , Glicerol Quinasa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Animales , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Femenino , Glucosa/biosíntesis , Glucosa/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Embarazo , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Aumento de Peso/genética
3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502170

RESUMEN

(1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to determine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model. (2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown adipocyte markers mRNA and immunodetection) in Ptn-/- mice either fed with standard-chow diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn-/- mice are protected against the development of HFD-induced insulin resistance, had lower liver lipid content and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in liver. HFD-Ptn-/- mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion increased the expression of specific markers of brown/beige adipocytes and was associated with the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions: Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis, by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Citocinas/deficiencia , Dieta Alta en Grasa/efectos adversos , Susceptibilidad a Enfermedades , Hígado Graso/etiología , Hígado Graso/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores , Proteínas Portadoras , Modelos Animales de Enfermedad , Metabolismo Energético , Hígado Graso/patología , Expresión Génica , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Tamaño de los Órganos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Eur J Nutr ; 58(6): 2521-2533, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30109419

RESUMEN

BACKGROUND: Although recent studies have investigated the effect of maternal nutrition on metabolic programming of the offspring, the question whether a nutritional insult during early gestation favours an altered metabolic state of the mother that persists during the remainder period of pregnancy, when foetal growth is maximal, remains to be answered. METHODS: To address this issue, we analysed the effect of 40% food restriction during the first 12 days of gestation on glucose tolerance, as well as on liver and adipose tissue metabolism, in Sprague-Dawley pregnant rats. RESULTS: We found that undernutrition at early gestation blocks pregnancy-associated accumulation of fat, leading to a net breakdown of lipids that may account for an increased delivery of fatty acids and glycerol to the liver. Together with altered expression of hepatic enzymes, this creates a catabolic state, characterized by decreased lipogenesis and increased ß-oxidation, which contributes to the ketonemia of underfed mothers. Furthermore, we observed that undernutrition during early pregnancy impairs insulin sensitivity at this stage and, importantly, exacerbates insulin resistance at late gestation, contributing to a diabetogenic state. CONCLUSION: Undernutrition during the first half of pregnancy not only alters liver and adipose tissue metabolism, but also exacerbates the maternal insulin resistance at late gestation, which may increase their risk of gestational diabetes. GENERAL SIGNIFICANCE: Together, these findings highlight the persistent impact of maternal nutrition during early gestation on the metabolism of the mother during late pregnancy.


Asunto(s)
Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Desnutrición/complicaciones , Desnutrición/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Animales , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Femenino , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Hígado/fisiopatología , Desnutrición/fisiopatología , Embarazo , Ratas , Ratas Sprague-Dawley
5.
Diabetologia ; 62(1): 123-135, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30327824

RESUMEN

AIMS/HYPOTHESIS: Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth and survival. Here, we hypothesise that this cytokine can play a regulatory role in glucose and lipid homeostasis. METHODS: To test this hypothesis, we performed a longitudinal study characterising the metabolic profile (circulating variables and tissue mRNA expression) of gene-targeted Ptn-deficient female mice and their corresponding wild-type counterparts at different ages from young adulthood (3 months) to older age (15 months). Metabolic cages were used to investigate the respiratory exchange ratio and energy expenditure, at both 24°C and 30°C. Undifferentiated immortalised mouse brown adipocytes (mBAs) were treated with 0.1 µg/ml pleiotrophin until day 6 of differentiation, and markers of mBA differentiation were analysed by quantitative real-time PCR (qPCR). RESULTS: Ptn deletion was associated with a reduction in total body fat (20.2% in Ptn+/+ vs 13.9% in Ptn-/- mice) and an enhanced lipolytic response to isoprenaline in isolated adipocytes from 15-month-old mice (189% in Ptn+/+ vs 273% in Ptn-/- mice). We found that Ptn-/- mice exhibited a significantly lower QUICKI value and an altered lipid profile; plasma triacylglycerols and NEFA did not increase with age, as happens in Ptn+/+ mice. Furthermore, the contribution of cold-induced thermogenesis to energy expenditure was greater in Ptn-/- than Ptn+/+ mice (42.6% and 33.6%, respectively). Body temperature and the activity and expression of deiodinase, T3 and mitochondrial uncoupling protein-1 in the brown adipose tissue of Ptn-/- mice were higher than in wild-type controls. Finally, supplementing brown pre-adipocytes with pleiotrophin decreased the expression of the brown adipocyte markers Cidea (20% reduction), Prdm16 (21% reduction), and Pgc1-α (also known as Ppargc1a, 11% reduction). CONCLUSIONS/INTERPRETATION: Our results reveal for the first time that pleiotrophin is a key player in preserving insulin sensitivity, driving the dynamics of adipose tissue lipid turnover and plasticity, and regulating energy metabolism and thermogenesis. These findings open therapeutic avenues for the treatment of metabolic disorders by targeting pleiotrophin in the crosstalk between white and brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Metabolismo Energético/fisiología , Termogénesis/fisiología , Animales , Proteínas Portadoras/genética , Citocinas/genética , Metabolismo Energético/genética , Femenino , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Estudios Longitudinales , Ratones , Ratones Noqueados , Termogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...