Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life Sci ; 336: 122302, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016577

RESUMEN

AIMS: Deoxynivalenol (DON), namely vomitoxin, is one of the most prevalent fungal toxins in cereal crops worldwide. However, the underlying toxic mechanisms of DON remain largely unknown. MAIN METHODS: DON exposure-caused changes in the murine plasma metabolome and gut microbiome were investigated by an LC-MS/MS-based nontargeted metabolomics approach and sequencing of 16S rRNA in fecal samples, respectively. Cellular models were then used to validate the findings from the metabolomics study. KEY FINDINGS: DON exposure increased intestinal barrier permeability evidenced by its-mediated decrease in colonic Claudin 5 and E-cadherin, as well as increases in colonic Ifn-γ, Cxcl9, Cxcl10, and Cxcr3. Furthermore, DON exposure resulted in a significant increase in murine plasma levels of deoxycholic acid (DCA). Also, DON exposure led to gut microbiota dysbiosis, which was associated with DON exposure-caused increase in plasma DCA. In addition, we found not only DON but also DCA dose-dependently caused a significant increase in the levels of IFN-γ, CXCL9, CXCL10, and/or CXCR3, as well as a significant decrease in the expression levels of Claudin 5 and/or E-cadherin in the human colonic epithelial cells (NCM460). SIGNIFICANCE: DON-mediated increase in DCA contributes to DON-caused intestinal injury. DCA may be a potential therapeutic target for DON enterotoxicity.


Asunto(s)
Enfermedades Intestinales , Espectrometría de Masas en Tándem , Humanos , Ratones , Animales , Cromatografía Liquida , ARN Ribosómico 16S , Claudina-5 , Cadherinas , Ácido Desoxicólico/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA