Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1336797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933704

RESUMEN

Intracapsular reconstruction (ICR) has long been recommended as a treatment for cranial cruciate ligament deficiency (CCLD) in dogs, but it has fallen out of favor due to its inferior long-term functional outcomes. These outcomes may be attributed to the poor stiffness and strength of the graft in the early period before ligamentization is completed. Additional placement of extracapsular sutures to mechanically protect the graft during the ligamentization process may be a viable method to address this problem. However, the biomechanical effect of this combined surgical approach remains unknown. This study aimed to evaluate the 3D kinematics of the CCLD stifle in dogs in response to ICR and combined extra- and intracapsular reconstruction (CEICR). Twelve hindlimbs were collected from nine cadavers of mature dogs. The limbs were tested using a custom-made testing apparatus that reproduces their sagittal plane kinematics during the stance phase. Four statuses of stifle joints were tested, namely, (a) cranial cruciate ligament (CCL) intact; (b) CCLD; (c) CCLD stifle stabilized by CEICR; and (d) CCLD stifle stabilized by ICR only. Three-dimensional stifle kinematics at the 5 instances of the stance phase were measured with an optoelectronic system. The results showed that ICR marginally corrects the increased adduction, internal rotation, and caudodistal stifle joint center displacement that occur as a result of CCLD. CEICR led to better restoration of the stifle kinematics, especially with respect to the internal rotation and cranial translation stabilities. Furthermore, CEICR only resulted in minor excessive restraints on other motion components. The findings indicated that the additional lateral fabellotibial suture offers immediate stability to the stifle, consequently lowering the risk of graft over-elongation in the short term postoperatively. Considering the propensity for the extracapsular suture to degrade over time, further in vivo studies are warranted to explore the long-term effects of the CEICR procedure.

2.
Sci Rep ; 14(1): 4639, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409316

RESUMEN

Knowledge regarding the ligament footprints in the canine stifle is essential for biomechanical modeling of the joint and patient-specific surgical planning for anatomical ligament reconstruction. The present study aimed to establish and evaluate deformable shape templates (DSTs) of the femur and tibia with footprints of the cruciate and collateral ligaments embedded for the noninvasive estimation of ligament footprint positions. To this end, a data set of computed tomography (CT)-derived surface models of the femur and tibia were established and used to build statistical shape models (SSMs). The contours of the stifle ligaments were obtained from CT scans of 27 hindlimb specimens with radio-opaque markings on the ligament footprints. The DST, constructed by embedding averaged footprint contours into the SSM, was used to estimate subject-specific ligament footprints in a leave-one-out cross-validation framework. The DST predictions were compared with those derived from radio-opaque-marked footprints. The results showed that the averaged Euclidean distances between the estimated and reference footprint centroids were less than 1.2 mm for the cruciate ligaments and 2.0 mm for the collateral ligaments. The DST appeared to provide a feasible alternative approach for noninvasively estimating the footprints of the stifle ligaments in vivo.


Asunto(s)
Articulación de la Rodilla , Rodilla de Cuadrúpedos , Animales , Perros , Humanos , Rodilla de Cuadrúpedos/diagnóstico por imagen , Rodilla de Cuadrúpedos/cirugía , Ligamentos Articulares , Tibia/diagnóstico por imagen , Fémur/diagnóstico por imagen , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...