Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Hum Neurosci ; 18: 1415904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873654

RESUMEN

Noninvasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS), are emerging as promising tools for enhancing cognitive functions by modulating brain activity and enhancing cognitive functions. Despite their potential, the specific and combined effects of tDCS and tRNS on brain functions, especially regarding functional connectivity, cortical inhibition, and memory performance, are not well-understood. This study aims to explore the distinct and combined impacts of tDCS and tRNS on these neural and cognitive parameters. Using a within-subject design, ten participants underwent four stimulation conditions: sham, tDCS, tRNS, and combined tDCS + tRNS. We assessed the impact on resting-state functional connectivity, cortical inhibition via Cortical Silent Period (CSP), and visuospatial memory performance using the Corsi Block-tapping Test (CBT). Our results indicate that while tDCS appears to induce brain lateralization, tRNS has more generalized and dispersive effects. Interestingly, the combined application of tDCS and tRNS did not amplify these effects but rather suggested a non-synergistic interaction, possibly due to divergent mechanistic pathways, as observed across fMRI, CSP, and CBT measures. These findings illuminate the complex interplay between tDCS and tRNS, highlighting their non-additive effects when used concurrently and underscoring the necessity for further research to optimize their application for cognitive enhancement.

2.
Comput Biol Med ; 163: 107213, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37413849

RESUMEN

The formation of customized neural networks as the basis of brain functions such as receptive field selectivity, learning or memory depends heavily on the long-term plasticity of synaptic connections. However, the current mean-field population models commonly used to simulate large-scale neural network dynamics lack explicit links to the underlying cellular mechanisms of long-term plasticity. In this study, we developed a new mean-field population model, the plastic density-based neural mass model (pdNMM), by incorporating a newly developed rate-based plasticity model based on the calcium control hypothesis into an existing density-based neural mass model. Derivation of the plasticity model was carried out using population density methods. Our results showed that the synaptic plasticity represented by the resulting rate-based plasticity model exhibited Bienenstock-Cooper-Munro-like learning rules. Furthermore, we demonstrated that the pdNMM accurately reproduced previous experimental observations of long-term plasticity, including characteristics of Hebbian plasticity such as longevity, associativity and input specificity, on hippocampal slices, and the formation of receptive field selectivity in the visual cortex. In conclusion, the pdNMM is a novel approach that can confer long-term plasticity to conventional mean-field neuronal population models.


Asunto(s)
Plasticidad Neuronal , Neuronas , Neuronas/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje/fisiología , Redes Neurales de la Computación , Hipocampo , Modelos Neurológicos
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142225

RESUMEN

Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (µa) at 830 nm, and reduced scattering coefficient (µs') at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and µa at both 690 and 830 nm were found on day 3; and increases in µs' at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.


Asunto(s)
Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular , Animales , Modelos Animales de Enfermedad , Hemodinámica , Infarto de la Arteria Cerebral Media/patología , Oxihemoglobinas , Ratas , Accidente Cerebrovascular/patología
4.
Biomedicines ; 10(7)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35884892

RESUMEN

(1) Background: Quantification of severity of epileptic activities, especially during electrical stimulation, is an unmet need for seizure control and evaluation of therapeutic efficacy. In this study, a parameter ratio derived from constrained square-root cubature Kalman filter (CSCKF) was formulated to quantify the excitability of local neural network and compared with three commonly used indicators, namely, band power, Teager energy operator, and sample entropy, to objectively determine their effectiveness in quantifying the severity of epileptiform discharges in mice. (2) Methods: A set of one normal and four types of epileptic EEGs was generated by a mathematical model. EEG data of epileptiform discharges during two types of electrical stimulation were recorded in 20 mice. Then, EEG segments of 5 s in length before, during and after the real and sham stimulation were collected. Both simulated and experimental data were used to compare the consistency and differences among the performance indicators. (3) Results: For the experimental data, the results of the four indicators were inconsistent during both types of electrical stimulation, although there was a trend that seizure severity changed with the indicators. For the simulated data, when the simulated EEG segments were used, the results of all four indicators were similar; however, this trend did not match the trend of excitability of the model network. In the model output which retained the DC component, except for the CSCKF parameter ratio, the results of the other three indicators were almost identical to those using the simulated EEG. For CSCKF, the parameter ratio faithfully reflected the excitability of the neural network. (4) Conclusion: For common EEG, CSCKF did not outperform other commonly used performance indicators. However, for EEG with a preserved DC component, CSCKF had the potential to quantify the excitability of the neural network and the associated severity of epileptiform discharges.

5.
World Neurosurg ; 161: 303-309, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35505548

RESUMEN

BACKGROUND: Survival analyses are heavily used to analyze data in which the time to event is of interest. The purpose of this paper is to introduce some fundamental concepts for survival analyses in medical studies. METHODS: We comprehensively review current survival methodologies, such as the nonparametric Kaplan-Meier method used to estimate survival probability, the log-rank test, one of the most popular tests for comparing survival curves, and the Cox proportional hazard model, which is used for building the relationship between survival time and specific risk factors. More advanced methods, such as time-dependent receiver operating characteristic, restricted mean survival time, and time-dependent covariates are also introduced. RESULTS: This tutorial is aimed toward covering the basics of survival analysis. We used a neurosurgical case series of surgically treated brain metastases from non-small cell lung cancer patients as an example. The survival time was defined from the date of craniotomy to the date of patient death. CONCLUSIONS: This work is an attempt to encourage more investigators/medical practitioners to use survival analyses appropriately in medical research. We highlight some statistical issues, make recommendations, and provide more advanced survival modeling in this aspect.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/cirugía , Modelos de Riesgos Proporcionales , Factores de Riesgo , Análisis de Supervivencia
6.
Neurology ; 98(2): e199-e206, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675106

RESUMEN

BACKGROUND AND OBJECTIVES: The GGC repeat expansion in the 5' untranslated region of NOTCH2NLC was recently identified as the cause of neuronal intranuclear inclusion disease (NIID), which may manifest with peripheral neuropathy. The aim of this study is to investigate its contribution to inherited neuropathy. METHODS: This cohort study screened patients with molecularly undiagnosed Charcot-Marie-Tooth disease (CMT) and healthy controls for the GGC repeat expansion in NOTCH2NLC using repeat-primed PCR and fragment analysis. The clinical and electrophysiologic features of the patients harboring the GGC repeat expansion were scrutinized. Skin biopsy with immunohistochemistry staining and electric microscopic imaging were performed. RESULTS: One hundred twenty-seven unrelated patients with CMT, including 66 cases with axonal CMT (CMT2), and 200 healthy controls were included. Among them, 7 patients with CMT carried a variant NOTCH2NLC allele with GGC repeat expansion, but it was absent in controls. The sizes of the expanded GGC repeats ranged from 80 to 104 repeats. All 7 patients developed sensory predominant neuropathy with an average age at disease onset of 37.1 years (range 21-55 years). Electrophysiologic studies revealed mild axonal sensorimotor polyneuropathy. Leukoencephalopathy was absent in the 5 patients who received a brain MRI. Skin biopsy from 2 patients showed eosinophilic, ubiquitin- and p62-positive intranuclear inclusions in the sweat gland cells and dermal fibroblasts. Two of the 7 patients had a family history of NIID. DISCUSSION: The NOTCH2NLC GGC repeat expansions are an underdiagnosed and important cause of inherited neuropathy. The expansion accounts for 10.6% (7 of 66) of molecularly unassigned CMT2 cases in the Taiwanese CMT cohort. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that in Taiwanese patients with genetically undiagnosed CMT, 10.6% of the CMT2 cases have the GGC repeat expansion in NOTCH2NLC.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Cuerpos de Inclusión Intranucleares/patología , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/patología , Enfermedades del Sistema Nervioso Periférico/patología , Expansión de Repetición de Trinucleótido , Adulto Joven
7.
Cancers (Basel) ; 13(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34439331

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is an adverse side effect of cancer treatment with increasing awareness. Hippocampal damage and related neurocognitive impairment may mediate the development of CICI, in which altered neurogenesis may play a role. In addition, increased inflammation may be related to chemotherapy-induced hippocampal damage. Memantine, an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that may enhance neurogenesis and modulate inflammation, may be useful for treating CICI. To test this hypothesis, paclitaxel was administered to eight-week-old male B6 mice to demonstrate the relationship between CICI and impaired neurogenesis, and then, we evaluated the impact of different memantine regimens on neurogenesis and inflammation in this CICI model. The results demonstrated that both the pretreatment and cotreatment regimens with memantine successfully reversed impaired neurogenesis and spatial memory impairment in behavior tests. The pretreatment regimen unsuccessfully inhibited the expression of peripheral and central TNF-α and IL-1ß and did not improve the mood alterations following paclitaxel treatment. However, the cotreatment regimen led to a better modulatory effect on inflammation and restoration of mood disturbance. In conclusion, this study illustrated that impaired neurogenesis is one of the mechanisms of paclitaxel-induced CICI. Memantine may serve as a potential treatment for paclitaxel-induced CICI, but different treatment strategies may lead to variations in the treatment efficacy.

8.
Neural Netw ; 143: 183-197, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34157643

RESUMEN

Despite its success in understanding brain rhythms, the neural mass model, as a low-dimensional mean-field network model, is phenomenological in nature, so that it cannot replicate some of rich repertoire of responses seen in real neuronal tissues. Here, using a colored-synapse population density method, we derived a novel neural mass model, termed density-based neural mass model (dNMM), as the mean-field description of network dynamics of adaptive exponential integrate-and-fire (aEIF) neurons, in which two critical neuronal features, i.e., voltage-dependent conductance-based synaptic interactions and adaptation of firing rate responses, were included. Our results showed that the dNMM was capable of correctly estimating firing rate responses of a neuronal population of aEIF neurons receiving stationary or time-varying excitatory and inhibitory inputs. Finally, it was also able to quantitatively describe the effect of spike-frequency adaptation in the generation of asynchronous irregular activity of excitatory-inhibitory cortical networks. We conclude that in terms of its biological reality and calculation efficiency, the dNMM is a suitable candidate to build significantly large-scale network models involving multiple brain areas, where the neuronal population is the smallest dynamic unit.


Asunto(s)
Modelos Neurológicos , Sinapsis , Potenciales de Acción , Adaptación Fisiológica , Encéfalo , Neuronas
9.
Theranostics ; 11(10): 4672-4687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754020

RESUMEN

Rationale: Oxaliplatin-induced peripheral neuropathy (OIPN) is a common adverse effect that causes delayed treatment and poor prognosis among colorectal cancer (CRC) patients. However, its mechanism remains elusive, and no effective treatment is available. Methods: We employed a prospective cohort study of adult patients with pathologically confirmed stage III CRC receiving adjuvant chemotherapy with an oxaliplatin-based regimen for investigating OIPN. To further validate the clinical manifestations and identify a potential therapeutic strategy, animal models, and in vitro studies on the mechanism of OIPN were applied. Results: Our work found that (1) consistent with clinical findings, OIPN was observed in animal models. Targeting the enzymatic activity of cathepsin S (CTSS) by pharmacological blockade and gene deficiency strategy alleviates the manifestations of OIPN. (2) Oxaliplatin treatment increases CTSS expression by enhancing cytosol translocation of interferon response factor 1 (IRF1), which then facilitates STIM-dependent store-operated Ca2+ entry homeostasis. (3) The cytokine array demonstrated an increase in anti-inflammatory cytokines and suppression of proinflammatory cytokines in mice treated with RJW-58. (4) Mechanistically, inhibiting CTSS facilitated olfactory receptors transcription factor 1 release from P300/CBP binding, which enhanced binding to the interleukin-10 (IL-10) promoter region, driving IL-10 downstream signaling pathway. (5) Serum CTSS expression is increased in CRC patients with oxaliplatin-induced neurotoxicity. Conclusions: We highlighted the critical role of CTSS in OIPN, which provides a therapeutic strategy for the common adverse side effects of oxaliplatin.


Asunto(s)
Catepsinas/genética , Neuronas/metabolismo , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Catepsinas/antagonistas & inhibidores , Catepsinas/efectos de los fármacos , Quimioterapia Adyuvante , Estudios de Cohortes , Neoplasias Colorrectales/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos , Femenino , Fluorouracilo/uso terapéutico , Ganglios Espinales , Humanos , Técnicas In Vitro , Leucovorina/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Terapia Molecular Dirigida , Conducción Nerviosa , Neuronas/efectos de los fármacos , Compuestos Organoplatinos/uso terapéutico , Oxaliplatino/efectos adversos , Oxaliplatino/farmacología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Estudios Prospectivos
10.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053827

RESUMEN

This work presents a fall detection system that is worn on the head, where the acceleration and posture are stable such that everyday movement can be identified without disturbing the wearer. Falling movements are recognized by comparing the acceleration and orientation of a wearer's head using prespecified thresholds. The proposed system consists of a triaxial accelerometer, gyroscope, and magnetometer; as such, a Madgwick's filter is adopted to improve the accuracy of the estimation of orientation. Moreover, with its integrated Wi-Fi module, the proposed system can notify an emergency contact in a timely manner to provide help for the falling person. Based on experimental results concerning falling movements and activities of daily living, the proposed system achieved a sensitivity of 96.67% in fall detection, with a specificity of 98.27%, and, therefore, is suitable for detecting falling movements in daily life.


Asunto(s)
Accidentes por Caídas , Actividades Cotidianas , Algoritmos , Dispositivos Electrónicos Vestibles , Aceleración , Humanos , Movimiento
11.
J Biomech ; 110: 109974, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32827771

RESUMEN

The main aim of this study was to evaluate the biomechanical and hemodynamic responses of vasa nervorum under transverse circular compression. In situ compress-and-hold experiments were performed on the sciatic nerves of healthy and diabetic rats, and the blood flow within the vasa nervorum was observed using Doppler-optical coherence tomography. A new technique was developed to obtain the time-course of the cross sectional area and the morphology of the vasa nervorum from the tomographic images. A quasi-linear viscoelastic model was used to investigate the overall biomechanical properties of the nerves, and a two-dimensional three-layered finite element model was constructed to analyze the distribution of stress and the morphological changes during the compression-relaxation process. The results showed that the lumenal area of vasa nervorum was reduced in the compression stage, especially for the diabetic nerves. The reduction was greater than 70% when the reduction of the nerve diameter was only 10%. The quasi-linear viscoelastic model showed that normal nerves were more elastic but less viscous than the diabetic nerves. The finite element analyses demonstrated that perineurium could sustain more stress than other layers, while epineurium served as a cushion to protect vasa nervora. In addition, there were regions within epineurium with less stress, so that vasa nervora in these saddle regions were less deformed. The vasa nervorum in diabetic rats was more prone to compression and reduction of blood flow than that of the normal rats. The histological studies supported the simulation results.


Asunto(s)
Diabetes Mellitus Experimental , Vasa Nervorum , Animales , Hemodinámica , Nervios Periféricos , Ratas , Nervio Ciático , Viscosidad
12.
Cancer Chemother Pharmacol ; 86(2): 245-255, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32683463

RESUMEN

PURPOSE: Chemotherapy-induced peripheral neuropathy often results in a reduction in drug dose. However, the serum level of anticancer drugs varies with time after intravenous infusion, and this factor has seldom been considered in previous in vitro studies. The goals of this study were to build an automatic dosage control system and to evaluate the influence of drug infusion rate on the cells. METHODS: Neurons and melanoma cells were used as the samples. The 3-h (average and peak concentration: 0.024 and 0.287 µM) and 24-h infusion (average and peak concentration: 0.020 and 0.042 µM) schemes were investigated. For evaluations, cell indentation tests by an atomic force microscope, serial immunofluorescent images, and cell viability analysis was performed. RESULTS: For the neurons, Young's modulus first increased and then remained unchanged in the 3-h scheme, but was stationary throughout the observation period in the 24-h scheme. For the cancer cells, Young's modulus increased in both infusion schemes, and the increase was larger in the 3-h scheme. Morphologically, axons swelled and shortened, and the number of their branches decreased in the 3-h scheme. In contrast, there was only slowed growth of axons without obvious morphological changes in the 24-h scheme. Viability analysis of the cancer cells revealed that the 3-h scheme had a better anticancer effect. CONCLUSION: A dosage-control system simulating the pharmacodynamic changes of drugs was successfully constructed for in vitro cell cultures. The 3-h scheme of paclitaxel showed better anticancer effects but more adverse effects on neuronal growth and morphology.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis , Ganglios Espinales/patología , Melanoma Experimental/patología , Neuronas/patología , Paclitaxel/farmacología , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Proliferación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Espinales/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Paclitaxel/administración & dosificación
13.
Dis Markers ; 2020: 3402108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32076460

RESUMEN

Background and Objective. The main purpose of this study was to develop a simple automatic diagnostic classification scheme for chemotherapy-induced peripheral neuropathy. METHODS: This was a prospective cohort study that enrolled patients with colorectal or gynecologic cancer post chemotherapy for more than 1 year. The patients underwent laboratory examinations (nerve conduction studies and quantitative sensory tests), and a questionnaire about the quality of life. An unsupervised classification algorithm was used to classify the patients into groups using a small number of variables derived from the laboratory tests. A panel of five neurologists also diagnosed the types of neuropathies according to the laboratory tests. The results by the unsupervised classification algorithm and the neurologists were compared. RESULTS: The neurologists' diagnoses showed much higher rates of entrapment syndromes (66.1%) and radiculopathies (55.1%) than polyneuropathy (motor/sensory: 33.1%/29.7%). A multivariate analysis showed that the questionnaire was not significantly correlated with the results of quantitative sensory tests (r = 0.27) or the neurologists' diagnoses (r = 0.27) or the neurologists' diagnoses (. CONCLUSION: The results of our unsupervised classification algorithm based on three variables of laboratory tests correlated well with the neurologists' diagnoses.


Asunto(s)
Antineoplásicos/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/clasificación , Estudios Prospectivos , Calidad de Vida , Índice de Severidad de la Enfermedad , Aprendizaje Automático no Supervisado
14.
Pain ; 161(6): 1237-1254, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068666

RESUMEN

The role of immune mediators, including proinflammatory cytokines in chemotherapy-induced peripheral neuropathy (CIPN), remains unclear. Here, we studied the contribution of interleukin-20 (IL-20) to the development of paclitaxel-induced peripheral neuropathy. Increased serum levels of IL-20 in cancer patients with chemotherapy were accompanied by increased CIPN risk. In mouse models, proinflammatory IL-20 levels in serum and dorsal root ganglia fluctuated with paclitaxel treatment. Blocking IL-20 with the neutralizing antibody or genetic deletion of its receptors prevented CIPN, alleviated peripheral nerve damage, and dampened inflammatory responses, including macrophage infiltration and cytokine release. Mechanistically, paclitaxel upregulated IL-20 through dysregulated Ca homeostasis, which augmented chemotherapy-induced neurotoxicity. Importantly, IL-20 suppression did not alter paclitaxel efficacy on cancer treatment both in vitro and in vivo. Together, targeting IL-20 ameliorates paclitaxel-induced peripheral neuropathy by suppressing neuroinflammation and restoring Ca homeostasis. Therefore, the anti-IL-20 monoclonal antibody is a promising therapeutic for the prevention and treatment of paclitaxel-induced neuropathy.


Asunto(s)
Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Animales , Ganglios Espinales , Humanos , Hiperalgesia , Interleucinas , Ratones , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
15.
Neuromodulation ; 23(3): 399-406, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31840383

RESUMEN

OBJECTIVE: To investigate whether indicators of cortical excitability are good biomarkers of seizure controllability in temporal lobe epilepsy (TLE). MATERIALS AND METHODS: Three groups of subjects were recruited: those with poorly controlled (PC) TLE (N = 41), well-controlled (WC) TLE (N = 71), and healthy controls (N = 44). Short- and long-latency recovery curves were obtained by paired-pulse transcranial magnetic stimulation. Linear mixed effect models were used to study the effects of group, interstimulus interval (ISI), and antiepileptic drugs on long-interval intracortical inhibition (LICI) and short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). RESULTS: The mixed effect model that did not incorporate antiepileptic drugs showed that group and ISI were significant factors for LICI and SICI/ICF. LICI in the healthy control group was greater than in the two epilepsy groups, and the difference was significant at ISIs of 50, 150, and 200 msec. In contrast, SICI/ICF in the PC group was greater than in the healthy control and WC groups, and the difference was significant at an ISI of 15 msec. However, due to large variance, it was difficult to identify a cutoff value with both good sensitivity and good specificity. Incorporating the information of antiepileptic drugs to the mixed effect model did not change the overall results. CONCLUSIONS: Although LICI and SICI/ICF parameters were significantly different at the group level, they may not be suitable biomarkers for the controllability of TLE at the subject level.


Asunto(s)
Excitabilidad Cortical , Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Convulsiones/fisiopatología , Estimulación Magnética Transcraneal/métodos , Adulto , Anticonvulsivantes/uso terapéutico , Corteza Cerebral/fisiopatología , Excitabilidad Cortical/efectos de los fármacos , Epilepsia Refractaria/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/prevención & control , Resultado del Tratamiento
16.
Brain Behav ; 9(12): e01483, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31749318

RESUMEN

INTRODUCTION: The main purpose of this study was to investigate the cerebral areas responsible for winking by observing the activation pattern and learning effects on cerebral cortices by comparing differences in activation pattern during winking before and after learning. METHODS: Sixty-three subjects were recruited, including 22 (11 males; 11 females) who could wink bilaterally and 41 (14 males; 27 females) who could wink unilaterally. Event-related functional magnetic resonance was performed. The subjects were asked to blink and wink according to projected instructions as the events for image analysis. The activation pattern was obtained by contrasting with the baseline images without eyelid movements. Those who could only wink unilaterally were asked to train themselves to wink the other eye. For those who succeeded (n = 24), another imaging study was performed and the results were compared with those before training. RESULTS AND CONCLUSION: Left winking resulted in activation in the left frontal lobe, while right winking resulted in activation in bilateral frontal lobes with predominance on the right side. For the subjects capable of only winking unilaterally, learning to wink on the other side activated similar cortical areas to those in the subjects capable of bilateral winking without training.


Asunto(s)
Parpadeo/fisiología , Lóbulo Frontal/diagnóstico por imagen , Adulto , Movimientos Oculares/fisiología , Femenino , Lóbulo Frontal/fisiología , Humanos , Aprendizaje , Imagen por Resonancia Magnética/métodos , Masculino
17.
Epilepsia Open ; 3(4): 460-473, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30525115

RESUMEN

In vitro brain tissue preparations allow the convenient and affordable study of brain networks and have allowed us to garner molecular, cellular, and electrophysiologic insights into brain function with a detail not achievable in vivo. Preparations from both rodent and human postsurgical tissue have been utilized to generate in vitro electrical activity similar to electrographic activity seen in patients with epilepsy. A great deal of knowledge about how brain networks generate various forms of epileptiform activity has been gained, but due to the multiple in vitro models and manipulations used, there is a need for a standardization across studies. Here, we describe epileptiform patterns generated using in vitro brain preparations, focusing on issues and best practices pertaining to recording, reporting, and interpretation of the electrophysiologic patterns observed. We also discuss criteria for defining in vitro seizure-like patterns (i.e., ictal) and interictal discharges. Unifying terminologies and definitions are proposed. We suggest a set of best practices for reporting in vitro studies to favor both efficient across-lab comparisons and translation to in vivo models and human studies.

18.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662939

RESUMEN

When incorporating more realistic synaptic dynamics, the computational efficiency of population density methods (PDMs) declines sharply due to the increase in the dimension of master equations. To avoid such a decline, we develop an efficient PDM, termed colored-synapse PDM (csPDM), in which the dimension of the master equations does not depend on the number of synapse-associated state variables in the underlying network model. Our goal is to allow the PDM to incorporate realistic synaptic dynamics that possesses not only finite relaxation time but also short-term plasticity (STP). The model equations of csPDM are derived based on the diffusion approximation on synaptic dynamics and probability density function methods for Langevin equations with colored noise. Numerical examples, given by simulations of the population dynamics of uncoupled exponential integrate-and-fire (EIF) neurons, show good agreement between the results of csPDM and Monte Carlo simulations (MCSs). Compared to the original full-dimensional PDM (fdPDM), the csPDM reveals more excellent computational efficiency because of the lower dimension of the master equations. In addition, it permits network dynamics to possess the short-term plastic characteristics inherited from plastic synapses. The novel csPDM has potential applicability to any spiking neuron models because of no assumptions on neuronal dynamics, and, more importantly, this is the first report of PDM to successfully encompass short-term facilitation/depression properties.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Densidad de Población , Potenciales de Acción , Animales , Simulación por Computador , Humanos , Dinámicas no Lineales , Factores de Tiempo
19.
Epilepsia ; 58 Suppl 4: 40-52, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29105075

RESUMEN

In vitro preparations are a powerful tool to explore the mechanisms and processes underlying epileptogenesis and ictogenesis. In this review, we critically review the numerous in vitro methodologies utilized in epilepsy research. We provide support for the inclusion of detailed descriptions of techniques, including often ignored parameters with unpredictable yet significant effects on study reproducibility and outcomes. In addition, we explore how recent developments in brain slice preparation relate to their use as models of epileptic activity.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiopatología , Epilepsia/patología , Técnicas In Vitro , Comités Consultivos , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas In Vitro/instrumentación , Técnicas In Vitro/métodos , Técnicas In Vitro/normas , Masculino , Técnicas de Cultivo de Órganos/métodos , Técnicas de Cultivo de Órganos/normas
20.
J Clin Neurosci ; 27: 48-52, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26765753

RESUMEN

The aim of this study was to evaluate the flexor and extensor muscle tone of the upper limbs in patients with spasticity or rigidity and to investigate the difference in hypertonia between spasticity and rigidity. The two experimental groups consisted of stroke patients and parkinsonian patients. The control group consisted of age and sex-matched normal subjects. Quantitative upper limb pendulum tests starting from both flexed and extended joint positions were conducted. System identification with a simple linear model was performed and model parameters were derived. The differences between the three groups and two starting positions were investigated by these model parameters and tested by two-way analysis of variance. In total, 57 subjects were recruited, including 22 controls, 14 stroke patients and 21 parkinsonian patients. While stiffness coefficient showed no difference among groups, the number of swings, relaxation index and damping coefficient showed changes suggesting significant hypertonia in the two patient groups. There was no difference between these two patient groups. The test starting from the extended position constantly manifested higher muscle tone in all three groups. In conclusion, the hypertonia of parkinsonian and stroke patients could not be differentiated by the modified pendulum test; the elbow extensors showed a higher muscle tone in both control and patient groups; and hypertonia of both parkinsonian and stroke patients is velocity dependent.


Asunto(s)
Rigidez Muscular/fisiopatología , Espasticidad Muscular/fisiopatología , Tono Muscular/fisiología , Examen Neurológico/métodos , Enfermedad de Parkinson/fisiopatología , Accidente Cerebrovascular/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA