Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 751: 141481, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889453

RESUMEN

Drought is the most serious natural disaster causing severe damage to agriculture. Drought impacts on rice (Oryza sativa) production present a major threat to future global food security. In this paper, the Environmental Policy Integrated Climate (EPIC) model was used to simulate the growth of rice, in different periods (short-term (2019-2039), medium-term (2040-2069), long-term (2070-2099)), based on multiple Representative Concentration Pathways (RCP) scenarios. Drought intensity and rice physical vulnerability curves were assessed, based on the output parameters of EPIC, to evaluate global rice yield risk, due to drought. The results show that the average expected loss rate of global rice yield may reach 13.1% (±0.4%) in the future. The high-risk area of rice drought is mainly located in the north of 30°N. The fluctuation of rice drought risk and the proportion of increased risk areas will increase significantly. About 77.6% of the changes in rice drought risk are explained by variations in shortwave radiation (r = 0.88). Projections show that the average value of daily shortwave radiation increases by 1 W/m2 during the rice growth period, accompanied by an expected rice yield loss rate of about 12.7%. The rice drought risk methods presented in this paper provide plausible estimates of forecasting future drought risk under climate change, and address challenges of sparse data; we believe these methods can be applied to decisions for reducing drought-related crop losses and ensuring global food security.


Asunto(s)
Sequías , Oryza , Agricultura , Cambio Climático , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...