Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
J Environ Manage ; 370: 122398, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244931

RESUMEN

Tetracycline (TC), a commonly used antibiotic in wastewater, poses environmental and health risks, thus demanding advanced catalysts for its effective removal. In this work, for the first time, we integrated cobalt ferrite (CoFe2O4) and MXene quantum dots (MQDs) to form magnetic heterojunctions for rapid degradation of TC in the presence of peroxymonosulfate (PMS). Anchoring MQDs on the CoFe2O4 nanoparticles remarkably promoted the overall degradation rate of TC to 98.2% within 20 min via both radical and non-radical pathways. The first-order kinetic constant was 0.170 min-1, 3.5 and 15.5 times higher than that of CoFe2O4 and MQDs alone, respectively. Quenching experiments revealed that the addition of p-benzoquinone (p-BQ) and furfuryl alcohol (FFA) reduced the degradation of TC within 20 min to 56.2% and 28.4%, respectively, indicating that the primary reactive oxygen species for TC degradation in the CoFe2O4/MQDs + PMS system are •O2- and 1O2. CoFe2O4/MQDs also exhibited superparamagnetic property, which enabled their effective recovery by external magnetic field. Their reusability was verified by retaining 81.4% of catalytic efficacy in the consecutive 8th cycle. The CoFe2O4/MQDs + PMS system also exhibited excellent practicability in natural water samples as the degradation rates in both tap water and lake water environments exceeded 90%. Three potential pathways for TC degradation were proposed based on the liquid chromatography-mass spectrometry (LC-MS) characterizations and TC progressively transformed into 13 intermediates. This work may contribute to the ongoing efforts to develop advanced catalysts and strategies for mitigating the environmental impact of antibiotic pollution, offering a pathway toward sustainable and efficient water treatment technologies.

2.
Ecotoxicol Environ Saf ; 284: 116883, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173222

RESUMEN

Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.

3.
Biosci Trends ; 18(4): 370-378, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39198179

RESUMEN

Intrahepatic bile duct mucinous adenocarcinoma (IHBDMAC) is a rare pathological subtype of intrahepatic cholangiocarcinoma (IHCC), and its tumor biological features and survival outcomes have rarely been explored, especially when compared to the most common subtype, intrahepatic bile duct adenocarcinoma (IHBDAC). Therefore, the aim of this study was to explore the clinical features and survival outcomes of IHBDAC and IHBDMAC using the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2021. A total of 1,126 patients were included, with 1,083 diagnosed with IHBDAC and 43 diagnosed with IHBDMAC. Patients with IHBDMAC presented with a more advanced T stage (55.8% vs. 36.9%, P = 0.012) and higher rate of lymph node metastasis (37.2% vs. 24.9%, P = 0.070). Cox regression identified advanced T stage, lymph node metastasis, and distant metastasis as poor survival predictors, while chemotherapy and surgery were protective factors. Survival analyses revealed significantly worse overall survival (OS) and cancer-specific survival (CSS) for IHBDMAC compared to IHBDAC (P < 0.05). Even after matching, patients with IHBDMAC still had a worse prognosis than those with IHBDAC. These findings highlight the aggressive nature of IHBDMAC and the need for tailored therapeutic strategies. Future research should focus on prospective studies and molecular insights to develop targeted treatments for IHBDMAC.


Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias de los Conductos Biliares , Programa de VERF , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/patología , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/patología , Anciano , Pronóstico , Metástasis Linfática/patología , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Estadificación de Neoplasias , Colangiocarcinoma/mortalidad , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología
5.
Sci Total Environ ; 951: 175775, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197790

RESUMEN

Organics and divalent cations are the primary barriers constraining the performance of membrane technology, while the interactions between them and the detailed mechanisms of their impacts are still lacking in-depth analysis. In this study, sodium alginate and xanthan gum were selected as polysaccharides models, and the formation of transparent extracellular polymer particles (TEP) was assessed to examine the effect of Ca2+ and polysaccharides type on membrane fouling from both qualitative and quantitative perspectives. The results revealed that higher Ca2+ concentrations led to a greater abundance of TEP, and the transformation of TEP microstructure is a key factor for the membrane fouling change indicated by specific filtration resistance (SFR). TEP formed by sodium alginate underwent a transformation from amorphous-TEP (a-TEP) form to particle-TEP (p-TEP), corresponding to a unimodal pattern of SFR variation. With increasing Ca2+ concentration, the molecular interactions of xanthan gum became stronger, resulting in larger fibrous a-TEP and a continuous SFR increase. According to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, TEP formed by xanthan gum exhibited higher adhesion energy, thus causing more severe membrane fouling. The SFR variation of the TEP system can be satisfactorily explained by the conception of chemical potential change in the filtration process depicted in Flory-Huggins theory. This study is the first work to introduce models regarding chemical potential and TEP microstructure, linking the system chemical potential and TEP microstructure with membrane fouling indicated by SFR. As all, this study provided a new perspective for analyzing the polysaccharide fouling behavior via TEP determination and further enhanced the understanding through thermodynamic analysis.

6.
J Environ Manage ; 368: 122100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126845

RESUMEN

Wastewater treatment is effectively conducted using anaerobic biological methods. Nevertheless, the efficiency of these methods can be hindered by challenges like short-circuits and dead zones, particularly in treating persistent contaminants. This work utilized computational fluid dynamics (CFD) simulations to enhance water distribution, ensuring uniform interactions between solid and liquid phases, and thus mitigating issues related to short-circuits and dead zones. Such enhancements notably amplified the anaerobic biological process's efficiency. Furthermore, dye biodegradability was improved through the application of the hydrolysis acidification technique. Optimal hydraulic retention time for the hydrolysis-acidification reactor, established at 9 h, was determined via sludge cultivation and domestication for stable operation. During stable operation, an elevation in effluent volatile fatty acids was observed, alongside a COD removal rate fluctuating between 15% and 29%. Approximately 50% was noted as the rate of color removal. Simultaneously, a noticeable decrease in effluent pH occurred, with total nitrogen removal approximating 8%. An estimated BOD5/COD ratio of 0.32 was recorded. The incorporation of microbial agents led to an enhanced COD removal, ranging from 28% to 33%, thereby stabilizing the effluent BOD5/COD ratio at around 0.35. This research highlights the advantages of optimizing water distribution in anaerobic reactors, particularly when combined with hydrolysis-acidification techniques, effectively addressing issues of short-circuits and dead zones.


Asunto(s)
Hidrodinámica , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Hidrólisis , Eliminación de Residuos Líquidos/métodos , Colorantes/química , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Anaerobiosis
7.
J Environ Manage ; 365: 121638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959766

RESUMEN

In the sludge dewatering process, a formidable challenge arises due to the robust interactions between extracellular polymeric substances (EPS) and bound water. This study introduces a novel, synergistic conditioning method that combines iron (Fe2+)/peroxymonosulfate (PMS) and polyacrylamide (PAM) to significantly enhance sludge dewatering efficiency. The application of the Fe2+/PMS-PAM conditioning method led to a substantial reduction in specific filtration resistance (SFR) by 82.75% and capillary suction time (CST) by 80.44%, marking a considerable improvement in dewatering performance. Comprehensive analyses revealed that pre-oxidation with Fe2+/PMS in the Fe2+/PMS-PAM process effectively degraded EPS, facilitating the release of bound water. Subsequently, PAM enhanced the flocculation of fine sludge particles resulting from the advanced oxidation processes (AOPs). Furthermore, analysis based on the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated shifts in interaction energies, highlighting the breakdown of energy barriers within the sludge and a transition in surface characteristics from hydrophilic (3.79 mJ m-2) to hydrophobic (-61.86 mJ m-2). This shift promoted the spontaneous aggregation of sludge particles. The innovative use of the Flory-Huggins theory provided insights into the sludge filtration mechanism from a chemical potential perspective, linking these changes to SFR. The introduction of Fe2+/PMS-PAM conditioning disrupted the uniformity of the EPS-formed gel layer, significantly reducing the chemical potential difference between the permeate and the water in the gel layer, leading to a lower SFR and enhanced dewatering performance. This thermodynamic approach significantly enhances our understanding of sludge dewatering and conditioning. These findings represent a paradigm shift, offering innovative strategies for sludge treatment and expanding our comprehension of dewatering and conditioning techniques.


Asunto(s)
Resinas Acrílicas , Hierro , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Hierro/química , Resinas Acrílicas/química , Eliminación de Residuos Líquidos/métodos , Floculación , Peróxidos/química , Oxidación-Reducción , Filtración
8.
Bioresour Technol ; 406: 131011, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901751

RESUMEN

Predicting thermodynamic adhesion energies was a critical strategy for mitigating membrane fouling. This study utilized a backpropagation (BP) neural network model to predict the thermodynamic adhesion energies associated with membrane fouling in a planktonic anammox MBR. Acid-base (ΔGAB), electrostatic double layer (ΔGEL), and Lifshitz-van der Waals (ΔGLW) energies were selected as output variables, the training dataset was collected by the advanced Derjaguin-Landau-Verwey-Overbeek (XDLVO) method. Optimization results identified "7-10-3″ as the optimal network structure for the BP model. The prediction results demonstrated a high degree of fit between the predicted and experimental values of thermodynamic adhesion energy (R2 ≥ 0.9278), indicating a robust predictive capability of the model in this study. Overall, the study presented a practical BP neural network model for predicting thermodynamic adhesion energies, significantly enhancing the prediction tool for adhesive fouling behavior in anammox MBRs.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Redes Neurales de la Computación , Termodinámica , Plancton , Incrustaciones Biológicas , Anaerobiosis
9.
Bioresour Technol ; 402: 130767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692373

RESUMEN

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.


Asunto(s)
Plomo , Nitrógeno , Salinidad , Aguas Residuales , Aguas Residuales/química , Plomo/metabolismo , Nitrógeno/metabolismo , Purificación del Agua/métodos , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Anaerobiosis/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Reactores Biológicos , Microbiota/efectos de los fármacos , Desnitrificación/efectos de los fármacos
10.
Small ; : e2311427, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733219

RESUMEN

MXene-based photocatalytic membranes provide significant benefits for wastewater treatment by effectively combining membrane separation and photocatalytic degradation processes. MXene represents a pioneering 2D photocatalyst with a variable elemental composition, substantial surface area, abundant surface terminations, and exceptional photoelectric performance, offering significant advantages in producing high-performance photocatalytic membranes. In this review, an in-depth overview of the latest scientific progress in MXene-based photocatalytic membranes is provided. Initially, a brief introduction to the structure and photocatalytic capabilities of MXene is provided, highlighting their pivotal role in promoting the photocatalytic process. Subsequently, in pursuit of the optimal MXene-based photocatalytic membrane, critical factors such as the morphology, hydrophilicity, and stability of MXenes are meticulously taken into account. Various preparation strategies for MXene-based photocatalytic membranes, including blending, vacuum filtration, and dip coating, are also discussed. Furthermore, the application and mechanism of MXene-based photocatalytic membranes in micropollutant removal, oil-water separation, and antibacterial are examined. Lastly, the challenges in the development and practical application of MXene-based photocatalytic membranes, as well as their future research direction are delineated.

11.
J Vis Exp ; (206)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38709073

RESUMEN

Fibrinogenolytic agents that can dissolve fibrinogen directly have been widely used in anti-coagulation treatment. Generally, identifying new fibrinogenolytic agents requires the separation of each component first and then checking their fibrinogenolytic activities. Currently, polyacrylamide gel electrophoresis (PAGE) and chromatography are mostly used in the separating stage. Meanwhile, the fibrinogen plate assay and reaction products based PAGE are usually adopted to display their fibrinogenolytic activities. However, because of the spatiotemporal separation of those two stages, it is impossible to separate and display the active fibrinogenolytic agents with the same gel. To simplify the separating and displaying processes of fibrinogenolytic agent identification, we constructed a new fibrinogen-PAGE method to rapidly separate and display the fibrinogenolytic agents of peanut worms (Sipunculus nudus) in this study. This method includes fibrinogen-PAGE preparation, electrophoresis, renaturation, incubation, staining, and decolorization. The fibrinogenolytic activity and molecular weight of the protein can be detected simultaneously. According to this method, we successfully detected more than one active fibrinogenolytic agent of peanut wormhomogenate within 6 h. Moreover, this fibrinogen-PAGE method is time and cost-friendly. Furthermore, this method could be used to study the fibrinogenolytic agents of the other organisms.


Asunto(s)
Electroforesis en Gel de Poliacrilamida , Fibrinógeno , Fibrinógeno/química , Fibrinógeno/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida/métodos , Fibrinolíticos/química , Fibrinolíticos/farmacología , Fibrinolíticos/aislamiento & purificación
12.
Chemosphere ; 358: 142132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670505

RESUMEN

The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored. Employing Fe3O4 as a heterogeneous catalyst and AMATP for adsorption, CODCr was reduced by 78.38-79.14%, total nitrogen by 71.53-77.43%, and phosphorus by 97.74-98.10% in pharmaceutical effluents. Similarly, for dyeing effluents, Fe(III)-AMATP achieved 79.87-80.94% CODCr, 68.59-70.93% total nitrogen, and 79.31-83.33% phosphorus reduction. Regeneration experiments revealed that Fe3O4 maintained 59.48% efficiency over three cycles, and Fe(III)-AMATP maintained 62.47% efficiency over four cycles. This work offers an economical, hybrid approach for effective pharmaceutical and dyeing effluent treatment, with broad application potential.


Asunto(s)
Compuestos Férricos , Peróxido de Hidrógeno , Residuos Industriales , Compuestos de Magnesio , Compuestos de Silicona , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Compuestos Férricos/química , Adsorción , Compuestos de Silicona/química , Compuestos de Magnesio/química , Peróxido de Hidrógeno/química , Catálisis , Hierro/química , Fósforo/química , Nitrógeno/química , Colorantes/química , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
14.
Eco Environ Health ; 3(2): 183-191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646095

RESUMEN

Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 µg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.

15.
Small ; : e2400205, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676331

RESUMEN

The conventional membranes used for separating oil/water emulsions are typically limited by the properties of the membrane materials and the impact of membrane fouling, making continuous long-term usage unachievable. In this study, a filtering electrode with synchronous self-cleaning functionality is devised, exhibiting notable antifouling ability and an extended operational lifespan, suitable for the continuous separation of oil/water emulsions. Compared with the original Ti foam, the in situ growth of NiTi-LDH (Layered double hydroxide) nano-flowers endows the modified Ti foam (NiTi-LDH/TF) with exceptional superhydrophilicity and underwater superoleophobicity. Driven by gravity, a rejection rate of over 99% is achieved for various emulsions containing oil content ranging from 1% to 50%, as well as oil/seawater emulsions. The flux recovery rate exceeds 90% after one hundred cycles and a 4-h filtration period. The enhanced separation performance is realized through the "gas bridge" effect during in situ aeration and electrochemical anodic oxidation. The internal aeration within the membrane pores contributes to the removal of oil foulants. This study underscores the potential of coupling foam metal filtration materials with electrochemical technology, providing a paradigm for the exploration of novel oil/water separation membranes.

16.
J Hazard Mater ; 469: 133973, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452683

RESUMEN

Efficient oil-water separation has always been a research hotspot in the field of environmental studies. Employing a one-step hydrothermal approach, NiFe-layered double hydroxides (LDH) nanosheets were synthesized on nickel foam substrates. The resulting NiFe-LDH/NF membrane exhibited rejection rates exceeding 99% across six diverse oil-water mixtures, concurrently demonstrating a remarkable ultra-high flux of 1.4 × 106 L·m-2·h-1. This flux value significantly surpasses those documented in existing literature, maintaining stable performance over 1000 manual filtration cycles. These breakthroughs stem from the synergistic interplay among the three-dimensional channels of the nickel foam, the nanosheets, and the hydration layer. By leveraging the pore size of the foam to enhance the functionality of the hydration layer, the conventional trade-off between permeability and selectivity was transformed into a balanced force relationship between the hydration layer and the oil phase. The operational and failure mechanisms of the hydration layer were examined using the prepared NiFe-LDH/NF membrane, validating the correlation between oil phase viscosity and density with hydration layer rupture. Additionally, an extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was employed to investigate changes in interaction energy, further reinforcing the study's findings. This research contributes novel insights and assistance to the comprehension and application of hydration layers in other membrane studies dedicated to oil-water separation.

17.
Sci Total Environ ; 920: 171124, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38382609

RESUMEN

While microalgal-bacterial membrane bioreactors (microalgal-bacterial MBRs) have risen as an important technique in the realm of sustainable wastewater treatment, the membrane fouling caused by free microalgae is still a significant challenge to cost-effective operation of the microalgal-bacterial MBRs. Addressing this imperative, the current study investigated the influence of magnesium ion (Mg2+) addition on the biological dynamics and membrane fouling characteristics of the laboratory-scale submerged microalgal-bacterial MBRs. The results showed that Mg2+, important in augmenting photosynthetic process, yielded a biomass concentration of 2.92 ± 0.06 g/L and chlorophyll-a/MLSS (mixed liquor suspended solids) of 33.95 ± 1.44 mg/g in the RMg (Mg2+ addition test group). Such augmentation culminated in elevated total nitrogen and phosphorus removal efficiencies, clocking 81.73 % and 80.98 % respectively in RMg. Remarkably, despite the enhanced microalgae activity and concentration in RMg, the TMP growth rate declined by a significant 46.8 % compared to R0. Detailed characterizations attributed reduced membrane fouling of RMg to a synergy of enlarged floc size and reduced EPS contents. This transformation is intrinsically linked to the bridging action of Mg2+ and its role in creating a non-stressed ecological environment for the microalgal-bacterial MBR. In conclusion, the addition of Mg2+ in the microalgal-bacterial MBR appears an efficient approach, improving the efficiency of pollutant treatment and mitigating fouling, which potentially revolutionizes cost-effective applications and propels the broader acceptance of microalgal-bacterial MBRs. It also of great importance to promote the development and application of microalgal-bacterial wastewater treatment technology.


Asunto(s)
Incrustaciones Biológicas , Microalgas , Aguas Residuales , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Reactores Biológicos/microbiología , Bacterias , Aguas del Alcantarillado
18.
Chem Soc Rev ; 53(5): 2738-2760, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38333989

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 219-224, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387925

RESUMEN

OBJECTIVE: To investigate possible mechanism on protien LMP1 expressed by EBV inducing plasmablast differentiation of DLBCL cell via the mTORC1 pathway. METHODS: The expression levels of LMP1 protein, CD38 and the phosphorylation levels of p70S6K in EBV+ and EBV- DLBCL cell lines were detected by Western blot. Cell lines overexpressing LMP1 gene stablely were constructed and LMP1 gene was silenced by RNAi. The expression of LMP1 gene was verified by RT-qPCR. The expression levels of LMP1 and CD38 and the phosphorylation levels of p70S6K in each group were detected by Western blot. RESULTS: Compared with EBV-DLBCL cells, the expression of LMP1 was detected on EBV +DLBCL cells (P =0.0008), EBV +DLBCL cells had higher phosphorylation levels of p70S6K (P =0.0072) and expression levels of CD38(P =0.0091). Compared with vector group, the cells of LMP1OE group had higher expression levels of LMP1 and CD38 (P =0.0353; P <0.0001), meanwhile molecular p70S6K was phosphorylated much more(P =0.0065); expression of LMP1 mRNA was verified(P <0.0001). Compared with si-NC group, expression level of LMP1 protein(P =0.0129) was not detected and phosphorylated p70S6K disappeared of LMP1KO group (P =0.0228); meanwhile, expression of CD38 decreased,although there was no significant difference (P =0.2377). CONCLUSION: LMP1 promotes DLBCL cells plasmablast differentiation via activating mTORC1 signal pathway.


Asunto(s)
Herpesvirus Humano 4 , Proteínas Quinasas S6 Ribosómicas 70-kDa , Humanos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Línea Celular , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
20.
J Environ Manage ; 354: 120383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382434

RESUMEN

The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Hierro , Eliminación de Residuos Líquidos/métodos , Antibacterianos , Polvos , Electrólisis/métodos , Oxidación-Reducción , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...