Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 28: 101363, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707353

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway that modulates cellular redox homeostasis via the regeneration of NADPH. G6PD-deficient cells have a reduced ability to induce the innate immune response, thus increasing host susceptibility to pathogen infections. An important part of the immune response is the activation of the inflammasome. G6PD-deficient peripheral blood mononuclear cells (PBMCs) from patients and human monocytic (THP-1) cells were used as models to investigate whether G6PD modulates inflammasome activation. A decreased expression of IL-1ß was observed in both G6PD-deficient PBMCs and PMA-primed G6PD-knockdown (G6PD-kd) THP-1 cells upon lipopolysaccharide (LPS)/adenosine triphosphate (ATP) or LPS/nigericin stimulation. The pro-IL-1ß expression of THP-1 cells was decreased by G6PD knockdown at the transcriptional and translational levels in an investigation of the expression of the inflammasome subunits. The phosphorylation of p38 MAPK and downstream c-Fos expression were decreased upon G6PD knockdown, accompanied by decreased AP-1 translocation into the nucleus. Impaired inflammasome activation in G6PD-kd THP-1 cells was mediated by a decrease in the production of reactive oxygen species (ROS) by NOX signaling, while treatment with hydrogen peroxide (H2O2) enhanced inflammasome activation in G6PD-kd THP-1 cells. G6PD knockdown decreased Staphylococcus aureus and Escherichia coli clearance in G6PD-kd THP-1 cells and G6PD-deficient PBMCs following inflammasome activation. These findings support the notion that enhanced pathogen susceptibility in G6PD deficiency is, in part, due to an altered redox signaling, which adversely affects inflammasome activation and the bactericidal response.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/inmunología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , NADPH Oxidasas/metabolismo , Factor de Transcripción AP-1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Técnicas de Silenciamiento del Gen , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/microbiología , Células HEK293 , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Lipopolisacáridos/efectos adversos , Masculino , Células THP-1/efectos de los fármacos , Células THP-1/inmunología , Células THP-1/microbiología , Adulto Joven
2.
Free Radic Res ; 51(6): 591-603, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28675952

RESUMEN

Oxidative stress induces miR-200c, the predominant microRNA (miRNA) in lung tissues; however, the antioxidant role and biochemistry of such induction have not been clearly defined. Therefore, a lung adenocarcinoma cell line (A549) and a normal lung fibroblast (MRC-5) were used as models to determine the effects of miR-200c expression on lung antioxidant response. Hydrogen peroxide (H2O2) upregulated miR-200c, whose overexpression exacerbated the decrease in cell proliferation, retarded the progression of cells in the G2/M-phase, and increased oxidative stress upon H2O2 stimulation. The expression of three antioxidant proteins, superoxide dismutase (SOD)-2, haem oxygenase (HO)-1, and sirtuin (SIRT) 1, was reduced upon H2O2 stimulation in miR-200c-overexpressed A549 cells. This phenomenon of increased oxidative stress and antioxidant protein downregulation also occurs simultaneously in miR-200c overexpressed MRC-5 cells. Molecular analysis revealed that miR-200c inhibited the gene expression of HO-1 by directly targeting its 3'-untranslated region. The downregulation of SOD2 and SIRT1 by miR-200c was mediated through zinc finger E-box-binding homeobox 2 (ZEB2) and extracellular signal-regulated kinase 5 (ERK5) pathways, respectively, where knockdown of ZEB2 or ERK5 decreased the expression of SOD2 or SIRT1 in A549 cells. LNA anti-miR-200c transfection in A549 cells inhibited the endogenous miR-200c expression, resulting in increased expressions of antioxidant proteins, reduced oxidative stress and recovered cell proliferation upon H2O2 stimulation. These findings indicate that miR-200c fine-tuned the antioxidant response of the lung cells to oxidative stress through several pathways, and thus this study provides novel information concerning the role of miR-200c in modulating redox homeostasis of lung.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Homeostasis/genética , Peróxido de Hidrógeno/farmacología , MicroARNs/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Regiones no Traducidas 3' , Células A549 , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Oxidación-Reducción , Estrés Oxidativo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/antagonistas & inhibidores , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
3.
PLoS One ; 11(4): e0153462, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27097228

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to meet the cellular needs for reductive biosynthesis and the maintenance of redox homeostasis. G6PD-deficient cells experience a high level of oxidative stress and an increased susceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation of viral replication and inflammatory response. In the current study, the role of G6PD on the inflammatory response was determined in both scramble control and G6PD-knockdown (G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased expression pattern of induced COX-2 and reduced production of downstream PGE2 occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX signaling requires the participation of G6PD. Together, these data suggest that G6PD deficiency affects the cellular inflammatory response and the decreased TNF-α-mediated antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/COX-2 signaling.


Asunto(s)
Coronavirus/fisiología , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Células Epiteliales/virología , Glucosafosfato Deshidrogenasa/genética , Sistema de Señalización de MAP Quinasas , NADPH Oxidasas/metabolismo , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Pulmón/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Replicación Viral/efectos de los fármacos
4.
Viruses ; 7(12): 6689-706, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26694452

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes-tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)-in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP⁺ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.


Asunto(s)
Coronavirus Humano 229E/inmunología , Enterovirus Humano A/inmunología , Glucosafosfato Deshidrogenasa/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Fibroblastos/inmunología , Fibroblastos/virología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Resistencia a Mixovirus/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Inflamm (Lond) ; 12: 34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945076

RESUMEN

BACKGROUND: This study was designed to investigate the effect of glucose 6-phosphate dehydrogenase (G6PD) deficiency on pro-inflammatory cytokine secretion using a palmitate-induced inflammation HepG2 in vitro model. The modulation of cellular pro-inflammatory cytokine expression under G6PD deficiency during chronic hepatic inflammation has never been investigated before. METHODS: The culture medium of untreated and palmitate-treated G6PD-scramble (Sc) and G6PD-knockdown (Gi) HepG2 cells were subjected to cytokine array analysis, followed by validation with ELISA and qRT-PCR of the target cytokine. The mechanism of altered cytokine secretion in palmitate-treated Sc and Gi HepG2 cells was examined in the presence of anti-oxidative enzyme (glutathione peroxidase, GPX), anti-inflammatory agent (curcumin), NF-κB inhibitor (BAY11-7085) and specific SiRNA against NF-κB subunit p65. RESULTS: Cytokine array analysis indicated that IL-8 is most significantly increased in G6PD-knockdown HepG2 cells. The up-regulation of IL-8 caused by G6PD deficiency in HepG2 cells was confirmed in other G6PD-deficient cells by qRT-PCR. The partial reduction of G6PD deficiency-derived IL-8 due to GPX and NF-κB blockers indicated that G6PD deficiency up-regulates pro-inflammatory cytokine IL-8 through oxidative stress and NF-κB pathway. CONCLUSIONS: G6PD deficiency predisposes cells to enhanced production of pro-inflammatory cytokine IL-8. Mechanistically, G6PD deficiency up-regulates IL-8 through oxidative stress and NF-κB pathway. The palmitate-induced inflammation in G6PD-deficient HepG2 cells could serve as an in vitro model to study the role of altered redox homeostasis in chronic hepatic inflammation.

7.
J Proteome Res ; 12(7): 3434-48, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23742107

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is pivotal to reduced nicotinamide adenine dinucleotide phosphate (NADPH) production and cellular redox balance. Cells with G6PD deficiency are susceptible to oxidant-induced death at high oxidative stress. However, it remains unclear what precise biological processes are affected by G6PD deficiency due to altered cellular redox homeostasis, particularly at low oxidative stress. To further explore the biological role of G6PD, we generated G6PD-knockdown cell clones using lung cancer line A549. We identified proteins differentially expressed in the knockdown clones without the addition of exogenous oxidant by means of isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). We validated a panel of proteins that showed altered expression in G6PD-knockdown clones and were involved in metabolism of xenobiotic and glutathione (GSH) as well as energy metabolism. To determine the physiological relevancy of our findings, we investigated the functional consequence of G6PD depletion in cells treated with a prevalent xenobiotic, aflatoxin B1(AFB1). We found a protective role of G6PD in AFB1-induced cytotoxicity, possibly via providing NADPH for NADPH oxidase to induce epoxide hydrolase 1 (EPHX1), a xenobiotic-metabolizing enzyme. Collectively, our findings reveal for the first time a proteome-wide dysregulation by G6PD depletion under the condition without exogenous oxidant challenge, and we suggest a novel association of G6PD activity with AFB1-related xenobiotic metabolism.


Asunto(s)
Aflatoxina B1/farmacología , Glucosafosfato Deshidrogenasa/metabolismo , Estrés Oxidativo/genética , Sustancias Protectoras/farmacología , Proteoma/metabolismo , Línea Celular Tumoral , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/genética , Glutatión/metabolismo , Homeostasis , Humanos , NADP/metabolismo , Oxidación-Reducción , Xenobióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...