Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(36): 19508-19512, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651703

RESUMEN

Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 µmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.


Asunto(s)
Nanoestructuras , Nanocables , NAD , Silicio , Benchmarking
2.
J Am Chem Soc ; 145(24): 12987-12991, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37284780

RESUMEN

Artificial photosynthesis offers a route to producing clean fuel energy. However, the large thermodynamic requirement for water splitting along with the corresponding sluggish kinetics for the oxygen evolution reaction (OER) limits its current practical application. Here, we offer an alternative approach by replacing the OER with the glycerol oxidation reaction (GOR) for value-added chemicals. By using a Si photoanode, a low GOR onset potential of -0.05 V vs RHE and a photocurrent density of 10 mA/cm2 at 0.5 V vs RHE can be reached. Coupled with a Si nanowire photocathode for the hydrogen evolution reaction (HER), the integrated system yields a high photocurrent density of 6 mA/cm2 with no applied bias under 1 sun illumination and can run for over 4 days under diurnal illumination. The demonstration of the GOR-HER integrated system provides a framework for designing bias-free photoelectrochemical devices at appreciable currents and establishes a facile approach to artificial photosynthesis.

3.
Nano Lett ; 22(6): 2437-2443, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35254081

RESUMEN

Cesium lead iodide (CsPbI3) is a promising semiconductor with a suitable band gap for optoelectronic devices. CsPbI3 has a metastable perovskite phase that undergoes a phase transition into an unfavorable nonperovskite phase in an ambient environment. This phase transition changes the optoelectronic properties of CsPbI3 and hinders its potential for device applications. Therefore, it is of central importance to understand the kinetics of such instability and develop strategies to control and stabilize the perovskite phase. Here, we use ultralong CsPbI3 nanowires as a model platform to investigate the phase transition kinetics. Our results depict the role of environmental stressors (moisture and temperature) in controlling the phase transition dynamics of CsPbI3, which can serve as guiding principles for future phase transition studies and the design of related photovoltaics. Furthermore, we demonstrate the controllability of phase propagation on individual nanowires by varying the moisture level and temperature.


Asunto(s)
Nanocables , Cesio , Yoduros , Semiconductores
4.
ACS Appl Bio Mater ; 5(2): 642-649, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35080840

RESUMEN

We report a potential biomedical material, NbTaTiVZr, and the impact of surface roughness on the osteoblast culture and later behavior based on in vitro tests of preosteoblasts. Cell activities such as adhesion, viability, and typical protein activity on NbTaTiVZr showed comparable results with that of commercially pure Ti (CP-Ti). In addition, NbTaTiVZr with a smooth surface exhibits better cell adhesion, viability, and typical protein activity which shows that surface modification can improve the biocompatibility of NbTaTiVZr. This supports the biological evidence and shows that NbTaTiVZr can potentially be evaluated as a biomedical material for clinical use.


Asunto(s)
Osteoblastos , Titanio , Materiales Biocompatibles/metabolismo , Adhesión Celular , Propiedades de Superficie , Titanio/farmacología
5.
Angew Chem Int Ed Engl ; 59(42): 18611-18618, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32648281

RESUMEN

Herein, we introduce the cyclic 8π-electron (C8π) molecule N,N'-diaryl-dihydrodibenzo[a,c]phenazine (DPAC) as a dual-functional donor to establish a series of new donor-linker-acceptor (D-L-A) dyads DLA1-DLA5. The excited-state bent-to-planar dynamics of DPAC regulate the energy gap of the donor, while the acceptors A1-A5 are endowed with different energy gaps and HOMO/LUMO levels. As a result, the rate and efficiency of the excited-state electron transfer vs. energy transfer can be finely harnessed, which is verified via steady-state spectroscopy and time-resolved emission measurements. This comprehensive approach demonstrates, for the first time, the manifold of excited-state properties governed by bifunctional donor-based D-L-A dyads, including bent-to-planar, photoinduced electron transfer (PET) from excited donor to acceptor (oxidative-PET), fluorescence resonance energy transfer (FRET), bent-to-planar followed by electron transfer (PFET), and PET from donor to excited acceptor (reductive-PET).

6.
Chemistry ; 25(72): 16755-16764, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31663166

RESUMEN

With the aim of generalizing the structure-properties relationship of bending heterocyclic molecules that undergo prominent photoinduced structural planarization (PISP), a series of new dihydrodibenzo[ac]phenazine derivatives in which one nitrogen atom is replaced by oxygen (PNO), sulfur (PNS), selenium (PNSe), or dimethylmethanediyl (PNC) was strategically designed and synthesized. Compounds PNO, PNS, and PNSe have significantly nonplanar geometries in the ground state, which undergo PISP to give a planarlike conformer and hence a large emission Stokes shift. A combination of femtosecond early relaxation dynamics and computational approaches established an R*→I* (intermediate)→P* sequential kinetic pattern for PNS and PNSe, whereas PNO undergoes R*→P* one-step kinetics. The polarization ability of the substituted heteroatoms, which is in the order O

7.
Inorg Chem ; 58(20): 13892-13901, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31565936

RESUMEN

Four diplatinum(II) complexes with the formula [Pt(pypm)(µ-Fn)]2 (2, 3a-c) bearing both a pyridine-pyrimidinate chelate and formamidinate bridge, where (pypm)H and FnH stand for 5-(pyridin-2-yl)-2-(trifluoromethyl)pyrimidine and functional formamidines with various substituents of iPr (n = 1), Ph (n = 2), C6H4tBu (n = 3), and C6H4CF3 (n = 4), were synthesized en route from a mononuclear intermediate represented by [Pt(pypm)Cl(F1H)] (1). Single-crystal X-ray diffraction studies confirmed the structure of 1 and 3a comprised of an individual "Pt(pypm)" unit and two "Pt(pypm)" units with a Pt···Pt distance of 2.8845(2) Å, respectively. Therefore, in contrast to the structured emission of mononuclear 1 with the first vibronic peak wavelength at 475 nm, all other diplatinum complexes with shortened Pt···Pt separation exhibited greatly red shifted and structureless metal-metal to ligand charge transfer (MMLCT) emission that extended into the near-infrared region in solid states. Their photophysical characteristics were measured under three distinctive morphological states (i.e., crystals, sublimed powders, and vacuum-deposited thin films) by steady-state UV-vis spectroscopy, while retention of Pt···Pt interactions in deposited thin films of 2 and 3a-c was confirmed using Raman spectroscopy, demonstrating lowered Pt···Pt stretching at 80-200 cm-1. Most importantly, complexes 3a-c exhibited a gradual red shift with the trends crystals < sublimed powders < vacuum-deposited thin films, a result of increased intermolecular π-π stacking interactions and Pt···Pt interactions, while crystalline samples exhibited the highest luminescence among all three morphological states due to the fewest defects in comparison to other morphologies. Finally, 3b was selected as a nondoped emitter for the fabrication of NIR-emitting OLEDs, giving an electroluminescence peak at 767 nm and a maximum external quantum efficiency of 0.14% with negligible roll-off.

8.
Angew Chem Int Ed Engl ; 58(38): 13297-13301, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31334586

RESUMEN

Phenothiazine derivatives based on the 10-phenyl-10H-phenothiazine (NAS) chromophore, namely 7-phenyl-7H-benzo[c]phenothiazine (NAS-1) and 12-phenyl-12H-benzo[a]phenothiazine (NAS-2), were designed and synthesized. NAS-1 and NAS-2 are constitutional isomers with different steric strains imposed on the phenothiazine core moiety. In solution, the more-strained NAS-2 possesses a bent structure and undergoes photoinduced structural planarization (PISP). In the crystal, despite the absence of PISP, bent NAS-2 exhibits prominent excimer emission as well as emission mechanochromism, which is not observed in the planar-like NAS and NAS-1. This unconventional observation results from the bent core structure facilitating π-π stacking of the peripheral naphthalene moieties. Two-photon-coupled depth-dependent emission shows spectral differences between the surface and kernel of the NAS-2 crystal, and is believed to be a general phenomenon, at least in part, for materials exhibiting emission mechanochromism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA