Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(9): 1980-1984, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38421197

RESUMEN

Efforts to develop alternatives to triflic anhydride (Tf2O) as a trifluoromethylation reagent continue due to its limitations, including volatility, corrosiveness, and moisture sensitivity. Described herein is the use of a trifluoromethylsulfonylpyridinium salt (TFSP), easily obtained by a one-step reaction of Tf2O with 4-dimethylaminopyridine, as a reagent for the trifluoromethylative difunctionalization of alkenes by photoredox catalysis. DMSO and CH3CN are suitable solvents for achieving keto- and amino-trifluoromethylation of alkenes, respectively, with good functional group tolerance.

2.
CNS Neurosci Ther ; 30(2): e14594, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332538

RESUMEN

BACKGROUND: With the rapidly increasing prevalence of metabolic diseases such as type 2 diabetes mellitus (T2DM), neuronal complications associated with these diseases have resulted in significant burdens on healthcare systems. Meanwhile, effective therapies have remained insufficient. A novel fatty acid called S-9-PAHSA has been reported to provide metabolic benefits in T2DM by regulating glucose metabolism. However, whether S-9-PAHSA has a neuroprotective effect in mouse models of T2DM remains unclear. METHODS: This in vivo study in mice fed a high-fat diet (HFD) for 5 months used fasting blood glucose, glucose tolerance, and insulin tolerance tests to examine the effect of S-9-PAHSA on glucose metabolism. The Morris water maze test was also used to assess the impact of S-9-PAHSA on cognition in the mice, while the neuroprotective effect of S-9-PAHSA was evaluated by measuring the expression of proteins related to apoptosis and oxidative stress. In addition, an in vitro study in PC12 cells assessed apoptosis, oxidative stress, and mitochondrial membrane potential with or without CAIII knockdown to determine the role of CAIII in the neuroprotective effect of S-9-PAHSA. RESULTS: S-9-PAHSA reduced fasting blood glucose levels significantly, increased insulin sensitivity in the HFD mice and also suppressed apoptosis and oxidative stress in the cortex of the mice and PC12 cells in a diabetic setting. By suppressing oxidative stress and apoptosis, S-9-PAHSA protected both neuronal cells and microvascular endothelial cells in in vivo and in vitro diabetic environments. Interestingly, this protective effect of S-9-PAHSA was reduced significantly when CAIII was knocked down in the PC12 cells, suggesting that CAIII has a major role in the neuroprotective effect of S-9-PAHSA. However, overexpression of CAIII did not significantly enhance the protective effect of S-9-PAHSA. CONCLUSION: S-9-PAHSA mediated by CAIII has the potential to exert a neuroprotective effect by suppressing apoptosis and oxidative stress in neuronal cells exposed to diabetic conditions. Furthermore, S-9-PAHSA has the capability to reduce fasting blood glucose and LDL levels and enhance insulin sensitivity in mice fed with HFD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Fármacos Neuroprotectores , Ácido Palmítico , Ácidos Esteáricos , Animales , Ratones , Ratas , Apoptosis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Anhidrasa Carbónica III/efectos de los fármacos , Anhidrasa Carbónica III/metabolismo
3.
Org Biomol Chem ; 21(45): 8989-8992, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37937947

RESUMEN

Owing to the ubiquity of the hydroxyl group, reductive deoxygenation of alcohols has become an active research area. The classic Barton-McCombie reaction suffers from a tedious two-step procedure. New efficient methods have been developed, but they have some limitations, such as a narrow substrate scope and the use of moisture-sensitive Lewis acids. In this work, we describe the Ph3P/ICH2CH2I-promoted reductive deoxygenation of alcohols with NaBH4. The process is applicable to benzyl, allyl and propargyl alcohols, and also to primary and secondary alcohols, demonstrating a wide substrate scope and a good level of functional group tolerance. This protocol features convenient operation and low cost of all reagents.

4.
J Org Chem ; 88(7): 4818-4828, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36913713

RESUMEN

Described here is the R3P/ICH2CH2I-promoted dehydroxylative sulfonylation of alcohols with a variety of sulfinates. In contrast to previous dehydroxylative sulfonylation methods, which are usually limited to active alcohols, such as benzyl, allyl, and propargyl alcohols, our protocol can be extended to both active and inactive alcohols (alkyl alcohols). Various sulfonyl groups can be incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high yields were obtained within 15 min of reaction time.

5.
J Org Chem ; 88(5): 3346-3352, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36763542

RESUMEN

Described herein is the convenient synthesis of an efficient trifluoromethoxylation reagent, nC4F9SO3CF3, by using cheap and widely available reagents and without the need of any tedious column chromatography purification procedure.

6.
Org Lett ; 24(41): 7611-7616, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36201292

RESUMEN

Herein, we describe the design and synthesis of a difluoromethylsulfonyl imidazolium salt, which can act as a radical difluoromethylation reagent to achieve the challenging amino- and oxy-difluoromethylation of alkenes. Notably, the three steps for the synthesis of the imidazolium salt do not require any tedious distillation or column chromatography purification process, and the amino- and oxy-difluoromethylation paths are simply determined by the selection of reaction solvents.


Asunto(s)
Alquenos , Cloruro de Sodio , Alquenos/química , Indicadores y Reactivos , Solventes
7.
Org Lett ; 24(27): 4992-4997, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35771975

RESUMEN

A successful Cu-catalyzed addition of both Cl and SO2OCF2H groups into alkenes allows us to discover the unusual reactivity of the SO2OCF2H group. As opposed to common sulfonic esters (RSO2-O-R'), in which the R' group is highly electrophilic, the SO2 moiety demonstrates higher electrophilicity in RSO2-OCF2H. The unexpected reactivity is further developed not only as a synthetic tool for well-functionalized alkenyl sulfonyl fluorides but also for the first 18F labeling of alkenyl sulfonyl fluorides.


Asunto(s)
Fluoruros , Ácidos Sulfínicos , Alquenos , Ésteres
8.
Chem Asian J ; 17(9): e202200184, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35266316

RESUMEN

The fluorination of alkenes with electrophilic N-F type reagents usually occurs through a Markovnikov-type addition, and the anti-Markovnikov-type addition may require the use of a transition metal catalyst or an expensive catalyst. Herein we describe a convenient anti-Markovnikov iodofluorination of alkenes with Selectfluor/n Bu4 NI. A wide substrate scope and good functional group tolerance were observed. The process allows for the construction of various C-F bonds, especially tertiary C-F bonds. The remarkable features make this protocol attractive, including convenient operations, simple reaction conditions, and the installation of an iodine atom which provides possibilities for further transformations.


Asunto(s)
Alquenos , Halogenación , Alquenos/química , Catálisis
9.
Org Lett ; 23(23): 9277-9282, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34797075

RESUMEN

In contrast with unactivated alkenes, the corresponding hydrotrifluoromethylation of styrene has remained challenging due to the strong propensity of styrene for oligomerization and polymerization. On the basis of our newly developed trifluoromethylation reagent, TFSP, herein we present a general method for the hydrotrifluoromethylation of styrene under photoredox catalysis. The substrate scope was further extended to unactivated alkenes, acrylates, acrylamides, and vinyl-heteroatom-substituted alkenes. The tunability of this method was showcased via the relevant deprotonative trifluoromethylation and trifluoromethyltrifluoroethoxylation reactions.

10.
J Org Chem ; 86(18): 13153-13159, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34476948

RESUMEN

Herein we describe an efficient construction of HCF2Se and HCF2S groups by tandem substitutions between alkyl bromides and a reagent system consisting of MSeCN (or MSCN) and Ph3P+CF2H Br-. The tandem process occurs via the first nucleophilic substitution of alkyl bromides by -SeCN (or -SCN) and the subsequent nucleophilic difluoromethylation.


Asunto(s)
Bromuros , Indicadores y Reactivos
11.
Chem Commun (Camb) ; 57(74): 9316-9329, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528952

RESUMEN

Although transition metal carbenes have found widespread applications and difluorocarbene has served as a versatile intermediate, it is still quite challenging to make use of transition-metal difluorocarbenes in synthetic chemistry due to their unpredictable reactivities. In this Highlight, we review recent developments in the transition-metal-catalyzed or -mediated transfer of difluorocarbene and the reactivies and conversions of transition-metal difluorocarbene complexes. We start with the MCF2 bonding, then provide the progress in the transfer of difluorocarbene, and finally briefly discuss the conversions of MCF2 into other metal complexes. The understanding of the interesting reactivities of MCF2 may help design the catalytic transfer of difluorocarbene for various reactions.

12.
Org Lett ; 23(15): 6079-6083, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34296876

RESUMEN

Trifluoromethyl substitution is notably popular in pharmaceuticals and agrochemicals; however, trifluoromethylated compounds normally rely on the use of cost-prohibitive or gaseous trifluoromethylating reagents, which diminishes the general applicability of these methods. Herein an efficient trifluoromethylation reagent trifluoromethylsulfonyl-pyridinium salt (TFSP) was reported, which can be readily prepared from cheap and easily available bulk industrial feedstocks. TFSP can generate a trifluoromethyl radical under photocatalysis and realize the effective azido- or cyano-trifluoromethylation reactions of alkenes.

13.
Chem Commun (Camb) ; 57(58): 7124-7127, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34179910

RESUMEN

Described herein is a Rh-catalyzed tunable defluorinative borylation of allylic gem-difluorides to provide allylborylated monofluoroalkenes or homoallylborylated monofluoroalkenes with excellent Z/E selectivities. Completely different reaction paths were observed by slightly changing the reaction conditions. Allylborylated monofluoroalkenes were further converted into dihydroxyl-containing monofluoroalkenes.

14.
Chem Commun (Camb) ; 57(21): 2649-2652, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33587731

RESUMEN

Although cyanofluoroalkylation has received increasing attention, a toxic cyanation reagent is usually required. Herein, a Cu-catalyzed difluorocarbene-based cyanodifluoromethylation of alkenes with BrCF2CO2Et/NH4HCO3 under photocatalytic conditions is described. BrCF2CO2Et and NH4HCO3 serve as a carbon source and a nitrogen source of the nitrile group, respectively, avoiding the use of a stoichiometric toxic cyanation reagent. The Cu-complex plays a dual role. It is not only a photocatalyst, but also a coupling catalyst for the formation of a C-CN bond.

15.
Org Lett ; 22(16): 6642-6646, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32806144

RESUMEN

A large number of fluorination methods have been developed, but the construction of a tertiary C-F bond remains challenging. Herein, we describe an efficient dehydroxylative fluorination of tertiary alcohols with Selectfluor via the activation of a hydroxyl group by a Ph2PCH2CH2PPh2/ICH2CH2I system. Although the reagents appear to be not compatible (Selectfluor with the phosphine and I- generated in situ), the reactions occur rapidly to give the desired products in moderate to high yields. This work may present a new discovery in fluorination of alcohols since the reported methods are mainly limited to primary and secondary alcohols.

16.
Acc Chem Res ; 53(8): 1498-1510, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786338

RESUMEN

Owing to the special effects of the fluorine element, including high electronegativity and small atomic radius, the incorporation of a fluorinated group into organic molecules may modify their physical, chemical, and biological properties. Fluorine-containing compounds have found widespread application in a variety of areas, and thus, the development of efficient reagents and methods for the incorporation of fluorinated groups has become a subject of significant interest.Described in this Account are our recent discoveries in the chemistry of fluorinated ylides/carbenes and related intermediates generated from phosphonium/sulfonium salts. Initially, we obtained the (triphenylphosphonio) difluoroacetate, Ph3P+CF2CO2- (PDFA), which was proposed as a reactive intermediate but had never been successfully synthesized. PDFA, shelf-stable and easy to prepare, is not only a mild ylide (Ph3P+CF2-) reagent, but also an efficient difluorocarbene source. It can directly generate difluorocarbene, via the first generation of ylide Ph3P+CF2-, simply under warming conditions without the need for any additive. Interestingly, difluorocarbene chemistry was then discovered by using PDFA as a reagent. Difluorocarbene can be oxidized to CF2═O, can react with elemental sulfur to afford CF2═S, and can be trapped by NaNH2 or NH3 to give CN-. The development of these processes into synthetic tools allowed us to achieve various reactions, including the challenging 18F-trifluoromethylthiolation and cyanodifluoromethylation. It was found that a substituent on the cation of a phosphonium salt can be directly transferred as a nucleophile despite the cation's high electrophilicity. This transfer process is like an "umpolung" of the cation, which may provide more opportunities for the synthetic utilities of phosphonium salts. The investigation of this transfer process led us to find that iodophosphonium salts, active intermediates which can be easily generated, may efficiently promote deoxygenative functionalizations of aldehydes and alcohols. Dehydroxylative substitution of alcohols by this protocol permits the use of unprotected amines with higher pKa values as nucleophiles, which is an attractive feature compared with the Mitsunobu reaction. On the basis of the ylide-to-carbene process (Ph3P+CF2- → :CF2), we further developed sulfonium salts as precursors of fluorinated ylides and fluorinated methyl carbenes. In particular, the studies on difluoromethylcarbene, remaining largely unexplored, may deserve more attention. The discoveries may find utility in the synthesis of biologically active fluorine-containing molecules.

17.
Chem Commun (Camb) ; 56(46): 6221-6224, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32369052

RESUMEN

For the dehydroxylation of aldoximes with 4-nitro-1-((trifluoromethyl)sulfonyl)-imidazole (NTSI), slight modifications of reaction conditions resulted in significantly different reaction paths to provide either nitriles or isonitriles. The challenging conversion of aldoximes into isonitriles was achieved under mild conditions.

18.
J Phys Chem A ; 124(24): 5033-5041, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32436382

RESUMEN

To provide feasible methods for the extraction of valuable metals from spent batteries or low-grade primary ores, the extraction behavior of some representative acidic phosphorus-containing compounds (APCCs) as extractants is evaluated from the perspective of experimental and theoretical investigations in this work. Aqueous solutions containing five metal ions, Ca(II), Co(II), Mg(II), Mn(II), and Ni(II), were made to simulate leaching liquids, and the extraction of these metals was investigated. A simplified calculated model was used to evaluate the interaction between each extractant and metal ions. The calculation results agree well with the experimental tests in trend. This work not only provides potential extractants for the extraction of valuable metals from spent batteries or low-grade primary ores but also demonstrates the practicability of the simplified calculation model.

19.
Nat Commun ; 10(1): 5362, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767850

RESUMEN

As a versatile intermediate, difluorocarbene is an electron-deficient transient species, meaning that its oxidation would be challenging. Herein we show that the oxidation of difluorocarbene could occur smoothly to generate carbonyl fluoride. The oxidation process is confirmed by successful trifluoromethoxylation, 18O-trifluoromethoxylation, the observation of AgOCF3 species, and DFT calculations.

20.
Rice (N Y) ; 12(1): 79, 2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31707526

RESUMEN

BACKGROUND: Proline (Pro) and γ-aminobutyric acid (GABA) play important roles in plant development and stress tolerance. However, the molecular components responsible for the transport of these molecules in rice remain largely unknown. RESULTS: Here we identified OsProT1 and OsProT3 as functional transporters for Pro and GABA. Transient expression of eGFP-OsProTs in plant protoplasts revealed that both OsProT1 and OsProT3 are localized to the plasma membrane. Ectopic expression in a yeast mutant demonstrated that both OsProT1 and OsProT3 specifically mediate transport of Pro and GABA with affinity for Pro in the low affinity range. qRT-PCR analyses suggested that OsProT1 was preferentially expressed in leaf sheathes during vegetative growth, while OsProT3 exhibited relatively high expression levels in several tissues, including nodes, panicles and roots. Interestingly, both OsProT1 and OsProT3 were induced by cadmium stress in rice shoots. CONCLUSIONS: Our results suggested that plasma membrane-localized OsProT1 and OsProT3 efficiently transport Pro and GABA when ectopically expressed in yeast and appear to be involved in various physiological processes, including adaption to cadmium stress in rice plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...