Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 114, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915127

RESUMEN

BACKGROUND: Mediterranean diet rich in polyphenolic compounds holds great promise to prevent and alleviate multiple sclerosis (MS), a central nervous system autoimmune disease associated with gut microbiome dysbiosis. Health-promoting effects of natural polyphenols with low bioavailability could be attributed to gut microbiota reconstruction. However, its underlying mechanism of action remains elusive, resulting in rare therapies have proposed for polyphenol-targeted modulation of gut microbiota for the treatment of MS. RESULTS: We found that oral ellagic acid (EA), a natural polyphenol rich in the Mediterranean diet, effectively halted the progression of experimental autoimmune encephalomyelitis (EAE), the animal model of MS, via regulating a microbiota-metabolites-immunity axis. EA remodeled the gut microbiome composition and particularly increased the relative abundances of short-chain fatty acids -producing bacteria like Alloprevotella. Propionate (C3) was most significantly up-regulated by EA, and integrative modeling revealed a strong negative correlation between Alloprevotella or C3 and the pathological symptoms of EAE. Gut microbiota depletion negated the alleviating effects of EA on EAE, whereas oral administration of Alloprevotella rava mimicked the beneficial effects of EA on EAE. Moreover, EA directly promoted Alloprevotella rava (DSM 22548) growth and C3 production in vitro. The cell-free supernatants of Alloprevotella rava co-culture with EA suppressed Th17 differentiation by modulating acetylation in cell models. C3 can alleviate EAE development, and the mechanism may be through inhibiting HDAC activity and up-regulating acetylation thereby reducing inflammatory cytokines secreted by pathogenic Th17 cells. CONCLUSIONS: Our study identifies EA as a novel and potentially effective prebiotic for improving MS and other autoimmune diseases via the microbiota-metabolites-immunity axis. Video Abstract.


Asunto(s)
Ácido Elágico , Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Esclerosis Múltiple , Propionatos , Ácido Elágico/farmacología , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/microbiología , Propionatos/metabolismo , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/microbiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino , Autoinmunidad/efectos de los fármacos , Disbiosis/microbiología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Humanos , Administración Oral
2.
Cell Metab ; 36(5): 1000-1012.e6, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38582087

RESUMEN

The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Ácido Homovanílico , Ratones Endogámicos C57BL , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Masculino , Humanos , Ácido Homovanílico/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Femenino
3.
Sci China Life Sci ; 67(4): 745-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157106

RESUMEN

The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.


Asunto(s)
Butiratos , Disbiosis , Ratones , Animales , ARN Ribosómico 16S/genética , Envejecimiento , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...