Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Pathobiology ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830348

RESUMEN

INTRODUCTION: The colorectal serrated pathway involves precursor lesions known as sessile serrated lesions (SSL) and traditional serrated adenomas (TSA). Mutations in BRAF or KRAS are crucial early events in this pathway. Additional genetic and epigenetic changes contribute to the progression of these lesions into high-grade lesions and, eventually, invasive carcinoma. METHODS: We employed digital spatial profiling to investigate the transcriptional changes associated with SSL and TSA. The genes identified are confirmed by immunohistochemical (IHC) staining. Colorectal (CRC) cell lines with CEACAM6 overexpression and knockdown were established to study the roles of CEACAM6 on tumorigenesis of CRC. RESULTS: Ten genes were upregulated in SSL and TSA, and seven were upregulated in both types of lesions. IHC staining confirmed overexpression of CEACAM6, LCN2, KRT19, and lysozyme in SSL and TSA. CEACAM6 expression is an early event in the serrated pathway but a late event in the conventional pathway. Using cell line models, we confirmed that CEACAM6 promotes CRC cells' proliferation, migration, and invasion abilities. CONCLUSION: These results highlight that the transcriptional changes in the early stages of tumorigenesis exhibit relative uniformity. Identifying these early events may hold significant promise in elucidating the mechanisms behind tumor initiation.

2.
Epilepsia ; 63(5): 1253-1265, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35213059

RESUMEN

OBJECTIVE: Pathogenic variants in DCX on the X chromosome lead to lissencephaly and subcortical band heterotopia (SBH), brain malformations caused by neuronal migration defects. Its product doublecortin (DCX) binds to microtubules to modulate microtubule polymerization. How pathogenic DCX variants affect these activities remains not fully investigated. METHODS: DCX variants were identified using whole exome and Sanger sequencing from six families with lissencephaly/SBH. We examined how these variants affect DCX functions using microtubule binding, regrowth, and colocalization assays. RESULTS: We found novel DCX variants p.Val177AlafsTer31 and p.Gly188Trp, as well as reported variants p.Arg196His, p.Lys202Met, and p.Thr203Ala. Incidentally, all of the missense variants were clustered on the C-terminal DCX domain. The microtubule binding ability was significantly decreased in p.Val177AlafsTer31, p.Gly188Trp, p.Lys202Met, and previously reported p.Asp262Gly variants. Furthermore, expression of p.Val177AlafsTer31, p.Gly188Trp, p.Arg196His, p.Lys202Met, and p.Asp262Gly variants hindered microtubule growth in cells. There were also decreases in the colocalization of p.Val177AlafsTer31, p.Thr203Ala, and p.Asp262Gly variants to microtubules. SIGNIFICANCE: Our results indicate that these variants in the C-terminal DCX domain altered microtubule binding and dynamics, which may underlie neuronal migration defects during brain development.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Lisencefalia , Neuropéptidos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Lisencefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Neuropéptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...