Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tomography ; 7(4): 555-572, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34698286

RESUMEN

In order to improve the image quality of BLADE magnetic resonance imaging (MRI) using the index tensor solvers and to evaluate MRI image quality in a clinical setting, we implemented BLADE MRI reconstructions using two tensor solvers (the least-squares solver and the L1 total-variation regularized least absolute deviation (L1TV-LAD) solver) on a graphics processing unit (GPU). The BLADE raw data were prospectively acquired and presented in random order before being assessed by two independent radiologists. Evaluation scores were examined for consistency and then by repeated measures analysis of variance (ANOVA) to identify the superior algorithm. The simulation showed the structural similarity index (SSIM) of various tensor solvers ranged between 0.995 and 0.999. Inter-reader reliability was high (Intraclass correlation coefficient (ICC) = 0.845, 95% confidence interval: 0.817, 0.87). The image score of L1TV-LAD was significantly higher than that of vendor-provided image and the least-squares method. The image score of the least-squares method was significantly lower than that of the vendor-provided image. No significance was identified in L1TV-LAD with a regularization strength of λ= 0.4-1.0. The L1TV-LAD with a regularization strength of λ= 0.4-0.7 was found consistently better than least-squares and vendor-provided reconstruction in BLADE MRI with a SENSitivity Encoding (SENSE) factor of 2. This warrants further development of the integrated computing system with the scanner.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Simulación por Computador , Análisis de los Mínimos Cuadrados , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
2.
Ultramicroscopy ; 225: 113289, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33906008

RESUMEN

Electron tomography is widely employed for the 3D morphological characterization at the nanoscale. In recent years, there has been a growing interest in analytical electron tomography (AET) as it is capable of providing 3D information about the elemental composition, chemical bonding and optical/electronic properties of nanomaterials. AET requires advanced reconstruction algorithms as the datasets often consist of a very limited number of projections. Total variation (TV)-based compressed sensing approaches were shown to provide high-quality reconstructions from undersampled datasets, but staircasing artefacts can appear when the assumption about piecewise constancy does not hold. In this paper, we compare higher-order TV and wavelet-based approaches for AET applications and provide an open-source Python toolbox, Pyetomo, containing 2D and 3D implementations of both methods. A highly sampled STEM-HAADF dataset of an Er-doped porous Si sample and a heavily undersampled STEM-EELS dataset of a Ge-rich GeSbTe (GST) thin film annealed at 450°C are used to evaluate the performance of the different approaches. We show that polynomial annihilation with order 3 (HOTV3) and the Bior4.4 wavelet outperform the classical TV minimization and the related Haar wavelet.

3.
Magn Reson Imaging ; 41: 80-86, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28412455

RESUMEN

PURPOSE: To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. MATERIALS AND METHODS: A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. RESULTS: Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. CONCLUSION: MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Ondas de Radio , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Simulación por Computador , Voluntarios Sanos , Frecuencia Cardíaca , Humanos , Reconocimiento de Normas Patrones Automatizadas , Fantasmas de Imagen , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
4.
Phys Med Biol ; 62(10): N204-N218, 2017 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327475

RESUMEN

The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p = 0.015). The quantitative measurements were a diameter of 16.3 ± 2.8 mm and wall distensibility of 2.0 ± 0.4 mm (12.5 ± 3.4%) and 0.7 ± 0.3 mm (4.1 ± 1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35 ± 15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/fisiología , Imagen por Resonancia Magnética/métodos , Respiración , Adulto , Artefactos , Estudios de Factibilidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Movimiento
5.
Med Phys ; 42(10): 5757-67, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26429249

RESUMEN

PURPOSE: To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). METHODS: This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. RESULTS: The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. CONCLUSIONS: The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Rotación , Gráficos por Computador , Humanos , Fantasmas de Imagen
6.
NMR Biomed ; 26(4): 400-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23233288

RESUMEN

Non-water suppression MRS (NWS MRS) has several advantages. First, the unsuppressed water signal can be used as internal calibration for metabolite quantification and as a reliable frequency/phase reference for retrospective motion correction. Second, it avoids the potential artifacts caused by incomplete water suppression (WS) and extra radiofrequency deposition from WS pulses. However, the frequency modulation (FM) sidebands originating from a large water signal will distort the spectrum. Among the methods proposed to solve the problems caused by FM sidebands, post-acquisition processing methods are superior in flexibility for general use compared with experimental methods. In this study, we propose two algorithms based on advanced matrix decomposition to remove the FM sidebands. These methods, the simultaneous diagonalization (QZ) algorithm and its subsequent variant, the simultaneously generalized Schur decomposition (SGSD) algorithm, were numerically evaluated using computer simulations. In addition, we quantitatively compared the performance of these methods and the modulus method in an in vitro experiment and in vivo NWS MRS against conventional WS data. Our results show that the proposed SGSD algorithm can reduce the FM sidebands to achieve superior estimation of concentration on three major metabolites. This method can be applied directly to spectra pre-acquired under various experimental conditions without modifying the acquisition sequences.


Asunto(s)
Espectroscopía de Protones por Resonancia Magnética/métodos , Agua/química , Algoritmos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Simulación por Computador , Creatina/metabolismo , Humanos , Fantasmas de Imagen
7.
Magn Reson Med ; 62(6): 1394-403, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19780180

RESUMEN

Intrascan subject movement in clinical MR spectroscopic examinations may result in inconsistent water suppression that distorts the metabolite signals, frame-to-frame variations in spectral phase and frequency, and consequent reductions in the signal-to-noise ratio due to destructive averaging. Frame-to-frame phase/frequency corrections, although reported to be successful in achieving constructive averaging, rely on consistent water suppression, which may be difficult in the presence of intrascan motion. In this study, motion correction using non-water-suppressed data acquisition is proposed to overcome the above difficulties. The time-domain matrix-pencil postprocessing method was used to extract water signals from the non-water-suppressed spectroscopic data, followed by phase and frequency corrections of the metabolite signals based on information obtained from the water signals. From in vivo experiments on seven healthy subjects at 3.0 T, quantification of metabolites using the unsuppressed water signal as a reference showed improved correlation with water-suppressed data acquired in the absence of motion (R(2) = 0.9669; slope = 0.94). The metabolite concentrations derived using the proposed approach were in good agreement with literature values. Computer simulations under various degrees of frequency and phase variations further demonstrated robust performance of the time-domain postprocessing approach.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Agua/metabolismo , Humanos , Movimiento , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...