Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(5): e0215450, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31063497

RESUMEN

Feature subspace learning plays a significant role in pattern recognition, and many efforts have been made to generate increasingly discriminative learning models. Recently, several discriminative feature learning methods based on a representation model have been proposed, which have not only attracted considerable attention but also achieved success in practical applications. Nevertheless, these methods for constructing the learning model simply depend on the class labels of the training instances and fail to consider the essential subspace structural information hidden in them. In this paper, we propose a robust feature subspace learning approach based on a low-rank representation. In our approach, the low-rank representation coefficients are considered as weights to construct the constraint item for feature learning, which can introduce a subspace structural similarity constraint in the proposed learning model for facilitating data adaptation and robustness. Moreover, by placing the subspace learning and low-rank representation into a unified framework, they can benefit each other during the iteration process to realize an overall optimum. To achieve extra discrimination, linear regression is also incorporated into our model to enforce the projection features around and close to their label-based centers. Furthermore, an iterative numerical scheme is designed to solve our proposed objective function and ensure convergence. Extensive experimental results obtained using several public image datasets demonstrate the advantages and effectiveness of our novel approach compared with those of the existing methods.


Asunto(s)
Aprendizaje Discriminativo , Algoritmos , Modelos Lineales , Reconocimiento de Normas Patrones Automatizadas
2.
PLoS One ; 13(6): e0199141, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924830

RESUMEN

Recently, sparse representation, which relies on the underlying assumption that samples can be sparsely represented by their labeled neighbors, has been applied with great success to image classification problems. Through sparse representation-based classification (SRC), the label can be assigned with minimum residual between the sample and its synthetic version with class-specific coding, which means that the coding scheme is the most significant factor for classification accuracy. However, conventional SRC-based coding schemes ignore dependency among the samples, which leads to an undesired result that similar samples may be coded into different categories due to quantization sensitivity. To address this problem, in this paper, a novel approach based on self-supervised sparse representation is proposed for image classification. In the proposed approach, the manifold structure of samples is firstly exploited with low rank representation. Next, the low-rank representation matrix is used to characterize the similarity of samples in order to establish a self-supervised sparse coding model, which aims to preserve the local structure of codings for similar samples. Finally, a numerical algorithm utilizing the alternating direction method of multipliers (ADMM) is developed to obtain the approximate solution. Experiments on several publicly available datasets validate the effectiveness and efficiency of our proposed approach compared with existing state-of-the-art methods.


Asunto(s)
Algoritmos , Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA