Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Cancer ; 130(4): 542-554, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38135712

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by perineural invasion (PNI), which is associated with excruciating neuropathic pain and malignant progression. However, the relationship between PNI and tumour stromal cells has not been clarified. METHODS: The dorsal root ganglia or sciatic nerves nerve model was used to observe the paracrine interaction and the activation effect among Schwann cells, tumour-associated macrophages (TAMs), and pancreatic cancer cells in vitro. Next generation sequencing, enzyme-linked immunosorbent assay and chromatin immunoprecipitation were used to explore the specific paracrine signalling between TAMs and Schwann cells. RESULTS: We demonstrated that more macrophages were expressed around nerves that have been infiltrated by pancreatic cancer cells compared with normal nerves in murine and human PNI specimens. In addition, high expression of CD68 or GFAP is associated with an increased incidence of PNI and indicates a poor 5-year survival rate in patients with PDAC. Mechanistically, tumour-associated macrophages (TAMs) activate Schwann cells via the bFGF/PI3K/Akt/c-myc/GFAP pathway. Schwann cells secrete IL-33 to recruit macrophages into the perineural milieu and facilitate the M2 pro-tumourigenic polarisation of macrophages. CONCLUSIONS: Our study demonstrates that the bFGF/IL-33 positive feedback loop between Schwann cells and TAMs is essential in the process of PNI of PDAC. The bFGF/PI3K/Akt/c-myc/GFAP pathway would open potential avenues for targeted therapy of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Interleucina-33 , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Invasividad Neoplásica
2.
Gland Surg ; 10(4): 1397-1409, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33968691

RESUMEN

BACKGROUND: The aim of the present study was to construct a novel gene signature on the tumor microenvironment (TME) to predict the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: We downloaded gene expression profiles and clinical information of PDAC from The Cancer Genome Atlas (TCGA) datasets, as well as Gene Expression Omnibus (GEO) datasets (GSE78229, GSE62452, and GSE28735). Differentially expressed genes were generated by comparing high versus low score groups of immune/stromal subgroups based on the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data algorithm. Subsequently, a prognostic risk score model was constructed and validated through univariate and multivariate Cox regression analyses. Finally, functional enrichment analysis and protein-protein interactions were performed to predict the functional implication of the prognostic model. RESULTS: We picked out 1,797 upregulated genes in immune groups and stromal groups. Through further analysis, we constructed a 7-gene signature on the TME. The risk score from the model effectively differentiated patients into high-risk and low-risk groups with different overall survival and was validated by GEO datasets. A functional analysis suggested that 7 selected genes and their co-expressed genes were mainly enriched in immune response, extracellular structure organization, and cell adhesion molecule binding. CONCLUSIONS: Our results showed that the 7-gene model on the TME can be used to assess the prognosis of patients with PDAC.

3.
Theranostics ; 10(11): 5029-5047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308766

RESUMEN

Rationale: The peripheral nervous system (PNS) plays an important role in tumor growth and progression. Schwann cells (SCs), the main glia cells of the PNS, augment cancer metastasis in contact-dependent or contact-independent manner in various malignancies. In the present study, we aimed to determine whether interplay between pancreatic cancer cells and SCs via paracrine signaling contributes to cancer progression. Methods: Immunofluorescence analysis was performed to reveal the distribution of SCs in PDAC tissues and to determine the prognostic value and clinicopathological relevance of the level of intra­tumoral SC markers for patients diagnosed with PDAC. Transwell assays and wound healing assays were carried out to investigate the influence of SC conditioned medium (SCM), SC co­culture, or co-cultured CM on the migratory and invasive abilities of pancreatic cancer cells. The mechanism of SCs induced cancer cells migration and invasion was confirmed using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assays (ELISAs), western blotting, immunofluorescence, immunohistochemistry, siRNA-mediated gene interference, and an in vivo mouse model. Results: Immunofluorescence analysis of tissue samples revealed that there were two different types of SCs distributed in the tumor microenvironment, the presence of which correlated with several clinicopathological characteristics and overall survival for patients with PDAC. Although SCM had no impact on the motility and invasiveness of tumor cells, both co-cultivation with SCs and co­cultured CM enhanced pancreatic cancer cell migration and invasion. Mechanistically, SC­derived Interleukin 6 (IL6), which was induced by co-culture with pancreatic cancer cells, augmented cancer cell migration and invasion by activating STAT3 signaling in cancer cells, while IL6 neutralization or STAT3 downregulation abrogated these effects. Furthermore, Interleukin 1ß (IL1ß), secreted by tumor cells, activated the nuclear actor (NF)-kappa B pathway in SCs, resulting in increased cytokines production, including IL6, while inhibiting the IL1ß-IL1R1 axis led to inactivation of NF-kappa B signaling and downregulated cytokines expression in SCs. Interfering with tumor-neuroglia crosstalk impeded cancer cell dissemination in vivo. Conclusion: Schwann cells were extensively distributed in the PDAC tumor microenvironment and high level of intra-tumoral SC markers could serve as an independent prognostic factor for poor survival of patients with PDAC. The tumor-neuroglia interaction is indispensable for SCs to acquire a tumor-facilitating phenotype. Targeting the tumor-neuroglia interplay might be a promising strategy to treat PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Neuroglía/patología , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Xenoinjertos , Humanos , Interleucina-6/metabolismo , Masculino , Ratones SCID , Persona de Mediana Edad , Subunidad p50 de NF-kappa B/metabolismo , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neuroglía/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Comunicación Paracrina , Factor de Transcripción STAT3/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA