Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 145: 103198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428341

RESUMEN

OBJECTIVES: Expansion of follicular helper T (Tfh) cells and abnormal glucose metabolism are present in patients with systemic lupus erythematosus (SLE). Pyruvate kinase M2 (PKM2) is one of the key glycolytic enzymes, and the underlying mechanism of PKM2-mediated Tfh cell glycolysis in SLE pathogenesis remains elusive. METHODS: We analyzed the percentage of Tfh cells and glycolysis in CD4+ T cells from SLE patients and healthy donors and performed RNA sequencing analysis of peripheral blood CD4+ T cells and differentiated Tfh cells from SLE patients. Following Tfh cell development in vitro and following treatment with PKM2 activator TEPP-46, PKM2 expression, glycolysis, and signaling pathway proteins were analyzed. Finally, diseased MRL/lpr mice were treated with TEPP-46 and assessed for treatment effects. RESULTS: We found that Tfh cell percentage and glycolysis levels were increased in SLE patients and MRL/lpr mice. TEPP-46 induced PKM2 tetramerization, thereby inhibiting Tfh cell glycolysis levels. On the one hand, TEPP-46 reduced the dimeric PKM2 entering the nucleus and reduced binding to the transcription factor BCL6. On the other hand, TEPP-46 inhibited the AKT/GSK-3ß pathway and glycolysis during Tfh cell differentiation. Finally, we confirmed that TEPP-46 effectively alleviated inflammatory damage in lupus-prone mice and reduced the expansion of Tfh cells in vivo. CONCLUSIONS: Our results demonstrate the involvement of PKM2-mediated glycolysis in Tfh cell differentiation and SLE pathogenesis, and PKM2 could be a key therapeutic target for the treatment of SLE.


Asunto(s)
Diferenciación Celular , Glucólisis , Inflamación , Lupus Eritematoso Sistémico , Ratones Endogámicos MRL lpr , Piruvato Quinasa , Células T Auxiliares Foliculares , Animales , Femenino , Humanos , Ratones , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Piruvato Quinasa/metabolismo , Transducción de Señal , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas/metabolismo
2.
Int J Neuropsychopharmacol ; 22(2): 143-156, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407503

RESUMEN

Background: Phosphodiesterase 4 is a promising target for developing novel antidepressants. However, prototype phosphodiesterase 4 inhibitors show severe side effects, including nausea and vomiting. N-Isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel phosphodiesterase 4 inhibitor with little emetic potential. In the present study, we investigated the inhibitory effect of FCPR03 on chronic unpredictable mild stress-induced, depressive-like behaviors in mice and explored the underlying mechanisms. Methods: The depression model of mice was established by chronic unpredictable mild stress. Forced swim test, tail suspension test, and sucrose preference test were used to assess depressive-like behaviors. Golgi-staining was utilized to analyze dendritic morphology and spine density. The level of cAMP was measured by enzyme-linked immnosorbent assay assay. Western blot was used to evaluate protein levels of phosphorylated cAMP-response element binding protein, protein kinase B, glycogen synthase kinase-3ß, and brain derived neurotrophic factor in both hippocampus and prefrontal cortex. Postsynaptic density protein 95 and synapsin 1 were also detected by western blot in the hippocampi. Results: Treatment with FCPR03 (0.5-1.0 mg/kg, i.p.) increased consumption of sucrose in the sucrose preference test in mice exposed to chronic unpredictable mild stress. FCPR03 shortened the immobility time in forced swim test and tail suspension test without affecting locomotor activity. Furthermore, chronic unpredictable mild stress decreased the dendritic spine density and dendritic length in the hippocampus. This change was accompanied by decreased expression of postsynaptic density protein 95 and synapsin 1. Interestingly, FCPR03 prevented dendritic spine loss and increased synaptic protein levels. Moreover, the levels of cAMP, phosphorylated cAMP-response element binding protein, and brain derived neurotrophic factor were elevated in chronic unpredictable mild stress-challenged mice after treatment with FCPR03. In addition, FCPR03 also enhanced the phosphorylation of both protein kinase B and glycogen synthase kinase-3ß in mice exposed to chronic unpredictable mild stress. Conclusion: The present study suggests that FCPR03 could prevent both depressive-like behaviors and spine loss induced by chronic unpredictable mild stress in the mice hippocampi.


Asunto(s)
Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Espinas Dendríticas/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Estrés Psicológico/complicaciones , Animales , Espinas Dendríticas/patología , Depresión/etiología , Modelos Animales de Enfermedad , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
J Chromatogr A ; 1429: 207-17, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26733392

RESUMEN

Microbiota-host co-metabolites are well-known to play important physiological roles, and their dysregulation has been found to be closely related to various diseases, including but not limited to inflammatory disorders. We developed herein an original and feasible method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method developed enables rapid quantification of 11 key gut microbiota-host co-metabolites spanning the succinate, phenylacetylglutamine, hippurate and trimethylamine metabolic pathways within 10 min. With this method, we were able to simultaneously monitor inflammation-induced alterations of these metabolites in rat serum, urine and feces matrices. The measured levels for this panel of endogenous metabolites ranged from 0.001 to 172.8 µg m L(-1). The intra- and inter-day precision of three analytes was less than 13.1% and the accuracy was between -13.0 to 11.2% for all QC levels. The extraction recoveries in serum ranged from 85.4 to 103.2%, while the RSD was 9.0% or less for all recoveries. In addition, extraction recoveries of 11 analytes in urine and feces samples were between 85.7% and 102.0% and RSD was less than 9.5%. The method developed here has been successfully applied to the analysis of real samples from 2,4,6-trinitrobenzenesulfonic acid-induced Crohn's disease in rats. All of these results suggest that the presently developed method is sufficiently sensitive and robust to simultaneously monitor co-metabolites with diverse properties and a range of different concentrations. Therefore, this method will be expected to be useful for comprehensive studies of the pathophysiological roles and mechanisms of these key microbiota-host co-metabolites, which reflect the function of the intestine, consequently offering novel opportunities for evaluating the occurrence, development and therapeutic effects of diseases related to microbiota disturbances.


Asunto(s)
Líquidos Corporales/química , Cromatografía Líquida de Alta Presión , Heces/química , Microbioma Gastrointestinal , Metabolómica/métodos , Espectrometría de Masas en Tándem , Animales , Masculino , Ratas
4.
PLoS One ; 9(2): e88281, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505462

RESUMEN

BACKGROUND: Coptidis Rhizome (CR), widely applied to treat with heat and toxicity, is one of the most commonly used traditional Chinese medicine (TCM), however, an extensive dosage can induce toxicity. Diarrhea is one of the most frequent side effects of CR treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, metabonomics was combined with the multivariate statistical analysis to discover the endogenous metabolites which related to the diarrheal induced by CR. The male Sprague-Dawley rats were dosed with 4.95 g CR/kg weight. Urine samples were collected at day -1 (before treatment), and days 14 and 21 for NMR analysis. Serum and tissues were collected at day 14 for GC-MS analysis and histopathological examination, respectively. The urine and serum metabolic profiles provided clearer distinction between CR-treated group and control group, which was confirmed by body weight change and diarrhea. Through multivariate statistical analysis, 12 marker metabolites from ¹H NMR and 8 ones from GC-MS have been found. Among those metabolites, hippurate, acetate, alanine, glycine and glutamate are likely to break the balance of gut microbiota, whereas, lactate and 2-ketoisovalerate showed association with energy metabolism. Meanwhile, we observed that the CR-induced toxicity will recover when the treatment was stopped. CONCLUSIONS/SIGNIFICANCE: These results suggest that the main reason for the CR-associated diarrhea might be disturbance in the normal gut microbiota. This metabonomics approach may provide an effective way to study the alteration of gut microbiota, which is expected to find broader application in other drug-induced gastrointestinal reaction assessment.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/toxicidad , Metabolómica/métodos , Animales , Coptis chinensis , Diarrea/etiología , Medicamentos Herbarios Chinos/administración & dosificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Metaboloma , Análisis Multivariante , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...