Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794215

RESUMEN

The combination of anti-angiogenesis agents with immune-checkpoint inhibitors is a promising treatment for patients with advanced hepatocellular carcinoma (HCC); however, therapeutic resistance caused by cancer stem cells present in tumor microenvironments remains to be overcome. In this study, we report for the first time that the Kringle 1 domain of human hepatocyte growth-factor α chain (HGFK1), a previously described anti-angiogenesis peptide, repressed the sub-population of CD90+ cancer stem cells (CSCs) and promoted their differentiation and chemotherapy sensitivity mainly through downregulation of pre-Met protein expression and inhibition of Wnt/ß-catenin and Notch pathways. Furthermore, we showed that the i.p. injection of PH1 (a tumor-targeted and biodegradable co-polymer), medicated plasmids encoding Endostatin (pEndo), HGFK1 genes (pEndo), and a combination of 50% pEndo + 50% pHGFK1 all significantly suppressed tumor growth and prolonged the survival of the HCC-bearing mice. Importantly, the combined treatment produced a potent synergistic effect, with 25% of the mice showing the complete clearance of the tumor via a reduction in the microvessel density (MVD) and the number of CD90+ CSCs in the tumor tissues. These results suggest for the first time that HGFK1 inhibits the CSCs of HCC. Furthermore, the combination of two broad-spectrum anti-angiogenic factors, Endo and HGFK1, is the optimal strategy for the development of effective anti-HCC drugs.

3.
Front Pharmacol ; 12: 691769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335258

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a lethal malignancy lacking effective treatment. The Cyclin-dependent kinases 4/6 (CDK4/6) and PI3K/AKT signal pathways play pivotal roles in carcinogenesis and are promising therapeutic targets for HCC. Here we identified a new CDK4/6 and PI3K/AKT multi-kinase inhibitor for the treatment of HCC. Methods: Using a repurposing and ensemble docking methodology, we screened a library of worldwide approved drugs to identify candidate CDK4/6 inhibitors. By MTT, apoptosis, and flow cytometry analysis, we investigated the effects of candidate drug in reducing cell-viability,inducing apoptosis, and causing cell-cycle arrest. The drug combination and thermal proteomic profiling (TPP) method were used to investigate whether the candidate drug produced antagonistic effect. The in vivo anti-cancer effect was performed in BALB/C nude mice subcutaneously xenografted with Huh7 cells. Results: We demonstrated for the first time that the anti-plasmodium drug aminoquinol is a new CDK4/6 and PI3K/AKT inhibitor. Aminoquinol significantly decreased cell viability, induced apoptosis, increased the percentage of cells in G1 phase. Drug combination screening indicated that aminoquinol could produce antagonistic effect with the PI3K inhibitor LY294002. TPP analysis confirmed that aminoquinol significantly stabilized CDK4, CDK6, PI3K and AKT proteins. Finally, in vivo study in Huh7 cells xenografted nude mice demonstrated that aminoquinol exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil with the combination treatment showed the highest therapeutic effect. Conclusion: The present study indicates for the first time the discovery of a new CDK4/6 and PI3K/AKT multi-kinase inhibitor aminoquinol. It could be used alone or as a combination therapeutic strategy for the treatment of HCC.

4.
Mol Med ; 27(1): 15, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579185

RESUMEN

BACKGROUND: Cyclin-dependent kinases 2/4/6 (CDK2/4/6) play critical roles in cell cycle progression, and their deregulations are hallmarks of hepatocellular carcinoma (HCC). METHODS: We used the combination of computational and experimental approaches to discover a CDK2/4/6 triple-inhibitor from FDA approved small-molecule drugs for the treatment of HCC. RESULTS: We identified vanoxerine dihydrochloride as a new CDK2/4/6 inhibitor, and a strong cytotoxicdrugin human HCC QGY7703 and Huh7 cells (IC50: 3.79 µM for QGY7703and 4.04 µM for Huh7 cells). In QGY7703 and Huh7 cells, vanoxerine dihydrochloride treatment caused G1-arrest, induced apoptosis, and reduced the expressions of CDK2/4/6, cyclin D/E, retinoblastoma protein (Rb), as well as the phosphorylation of CDK2/4/6 and Rb. Drug combination study indicated that vanoxerine dihydrochloride and 5-Fu produced synergistic cytotoxicity in vitro in Huh7 cells. Finally, in vivo study in BALB/C nude mice subcutaneously xenografted with Huh7 cells, vanoxerine dihydrochloride (40 mg/kg, i.p.) injection for 21 days produced significant anti-tumor activity (p < 0.05), which was comparable to that achieved by 5-Fu (10 mg/kg, i.p.), with the combination treatment resulted in synergistic effect. Immunohistochemistry staining of the tumor tissues also revealed significantly reduced expressions of Rb and CDK2/4/6in vanoxerinedihydrochloride treatment group. CONCLUSIONS: The present study isthe first report identifying a new CDK2/4/6 triple inhibitor vanoxerine dihydrochloride, and demonstrated that this drug represents a novel therapeutic strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Fluorouracilo/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Piperazinas/administración & dosificación , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo , Sinergismo Farmacológico , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inyecciones Subcutáneas , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Am J Cancer Res ; 10(1): 263-274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32064166

RESUMEN

Activation of the phosphoinositide 3 kinase (PI3K)/AKT pathway is frequently implicated in resistance to anticancer therapies. PI3K inhibitors can restore sensitivity to standard breast cancer therapies, including endocrine therapy, HER2-targeted agents, and chemotherapy. Our previous research showed that econazole, a novel PI3Ka inhibitor, inhibits the PI3K/AKT pathway and induces apoptosis in lung cancer cells. In this study, econazole showed significant cytotoxic activity against Adriamycin-resistant breast cancer cells in vitro and in vivo. Additionally, econazole significantly sensitized MDA-MB-231 and MCF-7 cells to Adriamycin via inhibiting the PI3K/AKT pathway. Overexpression of constitutively active AKT1 abolished the function of econazole. The combination of econazole and Adriamycin exerted synergistic inhibitory effects in breast cancer cells in vitro and in vivo. Taken together, the PI3K inhibitor econazole could effectively overcome Adriamycin resistance and showed synergistic effects with chemotherapy on breast cancer.

6.
Front Pharmacol ; 10: 1002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572184

RESUMEN

Esophagus cancer is the seventh cause of cancer-related deaths globally. In this study, we analyzed interleukin 6 (IL-6) gene expression in human esophagus cancer patients and showed that IL-6 mRNA levels are significantly higher in tumor tissues and negatively correlated with overall survival, suggesting that IL-6 is a potential therapeutic target for esophagus cancer. We further demonstrated that apigenin, a nature flavone product of green plants, inhibited IL-6 transcription and gene expression in human esophagus cancer Eca-109 and Kyse-30 cells. Apigenin significantly and dose-dependently inhibited cell proliferation and promoted apoptosis while stimulating the cleaved PARP (poly ADP-ribose polymerase) (C-PARP) and caspase-8 expression. It suppressed VEGF (Vascular endothelial growth Factor) expression and tumor-induced angiogenesis. Pretreatment of cells with IL-6 could completely reverse apigenin-induced cellular changes. Finally, using a preclinical nude mice model subcutaneously xenografted with Eca-109 cells, we demonstrated the in vivo antitumor activity and mechanisms of apigenin. Taken together, this study revealed for the first time that apigenin is a new IL-6 transcription inhibitor and that inhibiting IL-6 transcription is one of the mechanisms by which apigenin exhibits its anticancer effects. The potential clinical applications of apigenin in treating esophagus cancer warrant further investigations.

7.
Int J Biol Sci ; 15(7): 1523-1532, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31337981

RESUMEN

Background: The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is hyperactivated in lung cancer and regulates a broad range of cellular processes, including proliferation, survival, angiogenesis, and metastasis. Thus PI3K is considered a promising target for therapy. To date, PI3K inhibitors have not been approved for lung cancer. Recent studies showed that the antipsychotic agent flupentixol induced apoptosis of lung cancer cell, however the anti-tumor mechanism of flupentixol remains unclear. Methods: (1) The idock software simulated the molecular docking between the PI3Kα protein and flupentixol. (2) Inhibition of PI3Kα by the flupentixol was examined by in vitro kinase assays. (3) The cytotoxicity of flupentixol on the NSCLC cell lines was tested by MTT assays. (4) We treated A549 and H661 cells with flupentixol and then measured the percentage of apoptotic cells by the Annexin V/PI analysis. (5) We investigated the effect of flupentixol on the expression of critical PI3K/AKT signaling pathway proteins, further analyzed on the cleavage of PARP and caspase-3 by Western blotting. (6) BALB/C nude mice were subcutaneously injected with A549 cells to evaluate the effect of flupentixol on the growth of lung carcinoma. Results: Structural analysis of the predicted binding conformation suggested that flupentixol docks to the ATP binding pocket of PI3Kα. Kinase assays demonstrate that flupentixol indeed inhibited the PI3Kα kinase activity. Flupentixol exhibited cytotoxicity in lung cancer cell lines A549 and H661 in a dose- and time-dependent manner. Furthermore, flupentixol more strongly inhibited the phosphorylation of AKT (T308 and S473) and the expression of its downstream target gene Bcl-2 than two known PI3K inhibitors (BYL719 and BKM120). Flupentixol induced apoptosis as measured by PARP and caspase-3 cleavage. Finally, flupentixol significantly suppressed A549 xenograft growth in BALB/C nude mice. Conclusions: Flupentixol could be docked to the PI3Kα protein and specifically inhibit the PI3K/AKT pathway and survival of lung cancer cells in vitro and in vivo. As an old drug, flupentixol is a new PI3K inhibitor that may be used for the treatment of lung cancers.


Asunto(s)
Antineoplásicos/farmacología , Antipsicóticos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Flupentixol/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Células A549 , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/enzimología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Trasplante de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Programas Informáticos
8.
Oncol Rep ; 40(3): 1592-1600, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29956794

RESUMEN

Since cyclin­dependent kinases 4/6 (CDK4/6) play pivotal roles in cell cycle regulation and are overexpressed in human skin cancers, CDK4/6 inhibitors are potentially effective drugs for skin cancer. In the present study, we present a mixed computational and experimental study attempting to repurpose approved small­molecule drugs as dual CDK4/6 inhibitors for skin cancer treatment. We performed structure­based virtual screening using the docking software idock, targeting an ensemble of CDK4/6 structures. We identified and selected nine compounds with significant predicted scores, and evaluated their cytotoxic effects in vitro in A375 and A431 human skin cancer cell lines. Rafoxanide was found to exhibit the highest cytotoxic effects (IC50: 1.09 µM for A375 and 1.31 µM for A431 cells). Consistent with the expected properties of CDK4/6 inhibitors, rafoxanide significantly increased the G1 phase population. Notably, we revealed that rafoxanide specifically decreased the expression of CDK4/6, cyclin D, retinoblastoma protein (Rb) and the phosphorylation of CDK4/6 and Rb. Furthermore, the anticancer effect of rafoxanide was demonstrated in vivo in BALB/C nude mice subcutaneously xenografted with human skin cancer A375 cells. Rafoxanide (40 mg/kg, i.p.) exhibited significant antitumor activity, comparable to that of oxaliplatin (5 mg/kg, i.p.). The combined administration of rafoxanide and oxaliplatin produced a synergistic therapeutic effect. To the best of our knowledge, the present study is the first to indicate that rafoxanide inhibits CDK4/6 activity and is a potential candidate drug for the treatment of human skin cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Rafoxanida/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antinematodos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Mol Neurobiol ; 55(7): 5879-5888, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29101647

RESUMEN

Stroke causes death or long-term disabilities and threatens the general health of the population worldwide. Recent studies have suggested that miRNAs are dysregulated and can be used as biomarkers for diagnosis and prognosis in stroke. The intracerebral hemorrhage (ICH) accounts for 15% of all the stroke cases. However, at present, little is known regarding the functions and clinical implications of miRNAs in ICH. In the present study, we established the collagenase-induced rat ICH model to mimic human ICH syndrome. We profiled the expression of 728 rat miRNAs at different time points in rat brain tissues and plasma post-ICH and identified a set human brain-enriched miRNAs that had changed expression level in the plasma of rat ICH. Among them, the expression levels of miR-124 displayed significantly synchronous alterations in rat plasma and brain tissue during ICH progression. They were significantly elevated at the acute injury phase (day 1 and 2), gradually decreased during the delayed recovery phase (day 7, 14 and 30), and finally restored to normal levels at late recovery phase (day 60). We further determined the plasma expression profile of miR-124 from human ICH patients. Similar to the pattern observed in rat ICH model, our results indicated that immediately after patients reached the hospital, the average plasma concentrations of miR-124 increased more than 100-fold in 24 h, then decreased gradually on day 2, 7, 14 and to near normal level on day 30. Taken together, these results strongly suggested that plasma concentration of miR-124 is a promising candidate biomarker for the early detection and predictive prognosis of human ICH.


Asunto(s)
Hemorragia Cerebral/sangre , Hemorragia Cerebral/genética , MicroARNs/sangre , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/genética , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Hemorragia Cerebral/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología
10.
Sci Rep ; 7(1): 17987, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269744

RESUMEN

The phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway plays a pivotal role in many cellular processes, including the proliferation, survival and differentiation of lung cancer cells. Thus, PI3K is a promising therapeutic target for lung cancer treatment. In this study, we applied free and open-source protein-ligand docking software, screened 3167 FDA-approved small molecules, and identified putative PI3Kα inhibitors. Among them, econazole nitrate, an antifungal agent, exhibited the highest activity in decreasing cell viability in pathological types of NSCLC cell lines, including H661 (large cell lung cancer) and A549 (adenocarcinoma). Econazole decreased the protein levels of p-AKT and Bcl-2, but had no effect on the phosphorylation level of ERK. It inhibited cell growth and promote apoptosis in a dose-dependent manner. Furthermore, the combination of econazole and cisplatin exhibited additive and synergistic effects in the H661 and A549 lung cancer cell lines, respectively. Finally, we demonstrated that econazole significantly suppressed A549 tumor growth in nude mice. Our findings suggest that econazole is a new PI3K inhibitor and a potential drug that can be used in lung cancer treatment alone or in combination with cisplatin.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Econazol/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Células A549 , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Proteína Oncogénica v-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos
11.
J Pharmacol Sci ; 135(3): 114-120, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29132796

RESUMEN

Hyperuricemia, a long-term purine metabolic disorder, is a well-known risk factor for gout, hypertension and diabetes. In maintaining normal whole-body purine levels, xanthine oxidase (XOD) is a key enzyme in the purine metabolic pathway, as it catalyzes the oxidation of hypoxanthine to xanthine and finally to uric acid. Here we used the protein-ligand docking software idock to virtually screen potential XOD inhibitors from 3167 approved small compounds/drugs. The inhibitory activities of the ten compounds with the highest scores were tested on XOD in vitro. Interestingly, all the ten compounds inhibited the activity of XOD at certain degrees. Particularly, the anti-ulcerative-colitis drug olsalazine sodium demonstrated a great inhibitory activity for XOD (IC50 = 3.4 mg/L). Enzymatic kinetic studies revealed that the drug was a hybrid-type inhibitor of xanthine oxidase. Furthermore, the drug strikingly decreased serum urate levels, serum/hepatic activities of XOD at a dose-dependent manner in vivo. Thus, we demonstrated a successful hunting process of compounds/drugs for hyperuricemia through virtual screening, supporting a potential usage of olsalazine sodium in the treatment of hyperuricemia.


Asunto(s)
Ácidos Aminosalicílicos/farmacología , Antiulcerosos/farmacología , Ácido Úrico/sangre , Xantina Deshidrogenasa/antagonistas & inhibidores , Xantina Deshidrogenasa/metabolismo , Ácidos Aminosalicílicos/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Hiperuricemia/tratamiento farmacológico , Técnicas In Vitro , Masculino , Ratones , Relación Estructura-Actividad
12.
Front Pharmacol ; 8: 182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28420995

RESUMEN

RNA interfering (RNAi) using short interfering RNA (siRNA) is becoming a promising approach for cancer gene therapy. However, owing to the lack of safe and efficient carriers, the application of RNAi for clinical use is still very limited. In this study, we have developed cadmium sulphoselenide/Zinc sulfide quantum dots (CdSSe/ZnS QDs)-based nanocarriers for in vitro gene delivery. These CdSSe/ZnS QDs are functionalized with polyethyleneimine (PEI) to form stable nanoplex (QD-PEI) and subsequently they are used for siRNA loading which specially targets human telomerase reverse transcriptase (TERT). High gene transfection efficiency (>80%) was achieved on two glioblastoma cell lines, U87 and U251. The gene expression level (49.99 ± 10.23% for U87, 43.28 ± 9.66% for U251) and protein expression level (51.58 ± 7.88% for U87, 50.69 ± 7.59% for U251) of TERT is observed to decrease substantially after transfecting the tumor cells for 48 h. More importantly, the silencing of TERT gene expression significantly suppressed the proliferation of glioblastoma cells. No obvious cytotoxicity from these QD-PEI nanoplexes were observed over at 10 times of the transfected doses. Based on these results, we envision that QDs engineered here can be used as a safe and efficient gene nanocarrier for siRNA delivery and a promising tool for future cancer gene therapy applications.

13.
BMC Cancer ; 17(1): 126, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193190

RESUMEN

BACKGROUND: Antiangiogenic therapies are considered promising for the treatment of glioblastoma (GB). The non-collagenous C-terminal globular NC1 domain of type VIII collagen a1 chain, Vastatin, is an endogenous antiangiogenic polypeptide. Sustained enhanced expression of Vastatin was shown to inhibit tumour growth and metastasis in murine hepatocellular carcinoma models. In this study, we further explored the efficacy of Vastatin in the treatment of GB xenografts. METHOD: Treatment of Vastatin was carried out using a nanopolymer gene vector PEI600-CyD-Folate (H1). Antiangiogenic effect of Vastatin was tested in vitro by using co-culture system and conditioned medium. An orthotopic GB murine model was established to examine the in vivo therapeutic effect of Vastatin alone treatment and its combination with temozolomide. RESULTS: Vastatin gene transfection mediated by H1 could target tumour cells specifically and suppress the proliferation of microvessel endothelial cells (MECs) through a paracrine inhibition manner. Enhancing Vastatin expression by intracerebral injection of H1-Vastatin significantly prolonged animal survival from 48 to 75 days in GB murine model, which was comparable to the effect of Endostatin, the most studied endogenous antiangiogenic polypeptide. The diminished presence of CD34 positive cells in the GB xenografts suggested that Vastatin induced significant antiangiogenesis. Moreover, a synergistic effect in extending survival was detected when H1-Vastatin was administered with temozolomide (TMZ) in GB chemoresistant murine models. CONCLUSION: Our results suggest, for the first time, that Vastatin is an antiangiogenic polypeptide with significant potential therapeutic benefit for GB. H1-Vastatin gene therapy may have important implications in re-sensitizing recurrent GB to standard chemotherapeutic agents.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Proliferación Celular , Colágeno Tipo VIII/metabolismo , Glioblastoma/mortalidad , Neovascularización Patológica/prevención & control , Animales , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/prevención & control , Colágeno Tipo VIII/genética , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/prevención & control , Humanos , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Mater Chem B ; 5(18): 3327-3337, 2017 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32264398

RESUMEN

The clinical application of RNA interference (RNAi)-based cancer gene therapy has been hampered by the lack of efficient delivery of short interfering RNA (siRNA). In this context, the use of biodegradable charged polyester-based vectors (BCPVs) for delivering mutated K-Ras-targeting siRNA in a pancreatic xenograft model was investigated in vivo. Using mice bearing pancreatic xenografts as an animal model, results show that fluorescently labeled TRAMA (carboxytetramethylrhodamine) K-Ras siRNA continuously accumulated in the xenograft via BCPVs for at least 72 h. After the treatment, the level of the targeted mRNA and protein reduced to 50% of their original level. As a consequence, significant suppression in tumor growth, decreased tumor local infiltration, and increased cell apoptosis were observed in the xenograft model after the siRNA treatment. More importantly, physiological analysis results reveal that an excessive amount of BCPV (10 times higher than the commonly treated amount) will not have a significant influence on the status of the blood stream, blood stream components, and organ tissue, suggesting that BCPVs have very low in vivo toxicity. Our results indicate that the delivery of K-Ras-targeting siRNA via BCPV nanoparticles may be a promising strategy for pancreatic cancer therapy.

15.
Chem Biol Drug Des ; 89(4): 505-513, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27664399

RESUMEN

Bladder carcinoma (BC) is the ninth most common cause of cancer worldwide. Surgical resection and conventional chemotherapy and radiotherapy will ultimately fail due to tumor recurrence and resistance. Thus, the development of novel treatment is urgently needed. Fibroblast growth factor receptor 3 (FGFR3) is an important and well-established target for BC treatment. In this study, we utilized the free and open-source protein-ligand docking software idock to prospectively identify potential inhibitors of FGFR3 from 3,167 worldwide approved small-molecule drugs using a repositioning strategy. Six high-scoring compounds were purchased and tested in vitro. Among them, the acaricide drug fluazuron exhibited the highest antiproliferative effect in human BC cell lines RT112 and RT4. We further demonstrated that fluazuron treatment significantly increased the percentage of apoptosis cells, and decreased the phosphorylation level of FGFR3 and its downstream proteins FRS2-α, AKT, and ERK. We also investigated the anticancer effect of fluazuron in vivo in BALB/C nude mice subcutaneously xenografted with RT112 cells. Our results showed that oral treatment with fluazuron (80 mg/kg) significantly inhibited tumor growth. These results suggested for the first time that fluazuron is a potential inhibitor of FGFR3 and a candidate anticancer drug for the treatment of BC.


Asunto(s)
Acaricidas/farmacología , Antineoplásicos/farmacología , Compuestos de Fenilurea/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Acaricidas/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Simulación del Acoplamiento Molecular , Compuestos de Fenilurea/química , Fosforilación , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Neoplasias de la Vejiga Urinaria/patología
16.
Oncotarget ; 7(35): 56266-56278, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27409345

RESUMEN

Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers.


Asunto(s)
Neoplasias Encefálicas/genética , Elementos E-Box/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/genética , Adulto , Encéfalo/patología , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Ensayo de Cambio de Movilidad Electroforética , Genes Supresores de Tumor , Glioblastoma/patología , Humanos , Masculino , MicroARNs/metabolismo , Regiones Promotoras Genéticas , Adulto Joven
17.
Bioelectromagnetics ; 37(4): 244-55, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27061713

RESUMEN

Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity.


Asunto(s)
Sistema Nervioso Central/fisiología , Campos Magnéticos , Regeneración Nerviosa , Planarias/fisiología , Rotación , Animales , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Temperatura , Factores de Tiempo
18.
Mol Ther ; 24(8): 1358-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26961408

RESUMEN

Hepatocellular carcinoma (HCC) is a hypervascular cancer without effective treatment. Here we report that polypeptide of NC1 domain of type VIII collagen (Vastatin) is an endogenous polypeptide expressed in normal liver tissue but lost in the liver of most HCC patients (73.1%). Its expression level is negatively associated with tumor size (P = 0.035) and metastasis (P = 0.016) in HCC patients. To evaluate its potential use as a therapeutic, we constructed a recombinant adeno-associated virus carrying Vastatin (rAAV-Vastatin) to treat HCC in an orthotopic Buffalo rat model. rAAV-Vastatin treatment significantly prolonged the median survival, inhibited tumor growth, and completely prevented metastasis in HCC-bearing rats by decreasing microvessel density and increasing tumor necrosis. No detectable toxicity in nontumor-bearing mice was observed. To investigate its molecular mechanisms, we performed DNA microarray, western blotting assays, and bioinformatic analysis to determine its effect on global gene expression patterns and signal transduction pathways. Our results indicated that rAAV-Vastatin significantly reduced the expressions of Pck1, JAG2, and c-Fos, thus inhibiting the cellular metabolism, Notch and AP-1 signaling pathways, respectively. Hence, we demonstrated for the first time that Vastatin is a novel, safe, and effective antiangiogenic therapeutic and a potential biomarker for HCC.


Asunto(s)
Inhibidores de la Angiogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Colágeno Tipo VIII/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Adulto , Anciano , Inhibidores de la Angiogénesis/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Colágeno Tipo VIII/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Necrosis , Clasificación del Tumor , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Ratas , Receptores Notch/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Transducción Genética , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Nanobiotechnology ; 14: 10, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26846666

RESUMEN

BACKGROUND: The toxicity of CdSe/ZnS quantum dots (QDs) in the environment and biological systems has become a major concern for the nanoparticle community. However, the potential toxicity of QDs on immune cells and its corresponding immune functions remains poorly understood. In this study, we investigated the immunotoxicity of CdSe/ZnS QDs using the in vitro in macrophages and lymphocytes and in vivo in BALB/c mice. RESULTS: Our results indicated that macrophages treated with 1.25 or 2.5 nM QDs exhibited decreased cell viability, increased levels of reactive oxygen species (ROS), elevated apoptotic events, altered phagocytic ability, and decreased release of TNF-α and IL-6 by upon subsequent stimulation with Lipopolysaccharide (LPS). In contrast, lymphocytes exposed to QDs exhibited enhanced cell viability, increased release of TNF-α and IL-6 following exposure with CpG-ODN, and decreased transformation ability treatment in response to LPS. To study the in vivo effects in mice, we showed that QDs injection did not cause significant changes to body weight, hematology, organ histology, and phagocytic function of peritoneal macrophages in QDs-treated mice. In addition, the QDs formulation accumulated in major immune organs for more than 42 days. Lymphocytes from QDs-treated mice showed reduced cell viability, changed subtype proportions, increased TNF-α and IL-6 release, and reduced transformation ability in response to LPS. CONCLUSIONS: Taken together, these results suggested that exposures to CdSe/ZnS QDs could suppress immune-defense against foreign stimuli, which in turn could result in increased susceptibility of hosts to diseases.


Asunto(s)
Compuestos de Cadmio/inmunología , Compuestos de Cadmio/toxicidad , Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Puntos Cuánticos/toxicidad , Sulfuros/inmunología , Sulfuros/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Interleucina-6/inmunología , Interleucina-6/metabolismo , Linfocitos/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/toxicidad , Oligodesoxirribonucleótidos/inmunología , Oligodesoxirribonucleótidos/metabolismo , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
20.
Mol Med Rep ; 12(5): 6501-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26398439

RESUMEN

Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1­to­S­phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open­source protein­ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration­approved small molecular drugs with a re­purposing strategy. Among the top compounds identified by idock score, nine were selected for further study. Among them, adapalene (ADA; CD271,6­[3­(1­adamantyl)­4­methoxyphenyl]­2­naphtoic acid) exhibited the highest anti­proliferative effects in LOVO and DLD1 human colon cancer cell lines. Consistent with the expected properties of CDK2 inhibitors, the present study demonstrated that ADA significantly increased the G1­phase population and decreased the expression of CDK2, cyclin E and retinoblastoma protein (Rb), as well as the phosphorylation of CDK2 (on Thr­160) and Rb (on Ser­795). Furthermore, the anti­cancer effects of ADA were examined in vivo on xenograft tumors derived from DLD1 human colorectal cancer cells subcutaneously inoculated in BALB/C nude mice. ADA (20 mg/kg orally) exhibited marked anti­tumor activity, comparable to that of oxaliplatin (40 mg/kg), and dose­dependently inhibited tumor growth (P<0.05), while combined administration of ADA and oxaliplatin produced the highest therapeutic effect. To the best of our knowledge, the present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer.


Asunto(s)
Adapaleno/farmacología , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Adapaleno/química , Administración Oral , Animales , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ciclina E/antagonistas & inhibidores , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Combinación de Medicamentos , Femenino , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Compuestos Organoplatinos/farmacología , Oxaliplatino , Fosforilación/efectos de los fármacos , Proteína de Retinoblastoma/antagonistas & inhibidores , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...