Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 42(1): 283, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37880793

RESUMEN

BACKGROUND: Lung cancer is the most common and deadliest cancer worldwide, and approximately 90% of all lung cancer deaths are caused by tumor metastasis. Tumor-derived exosomes could potentially promote tumor metastasis through the delivery of metastasis-related molecules. However, the function and underlying mechanism of exosomal long noncoding RNA (lncRNA) in lung cancer metastasis remain largely unclear. METHODS: Cell exosomes were purified from conditioned media by differential ultracentrifugation and observed using transmission electron microscopy, and the size distributions were determined by nanoparticle tracking analysis. Exosomal lncRNA sequencing (lncRNA-seq) was used to identify long noncoding RNAs. Cell migration and invasion were determined by wound-healing assays, two-chamber transwell invasion assays and cell mobility tracking. Mice orthotopically and subcutaneously xenografted with human cancer cells were used to evaluate tumor metastasis in vivo. Western blot, qRT‒PCR, RNA-seq, and dual-luciferase reporter assays were performed to investigate the potential mechanism. The level of exosomal lncRNA in plasma was examined by qRT‒PCR. MS2-tagged RNA affinity purification (MS2-TRAP) assays were performed to verify lncRNA-bound miRNAs. RESULTS: Exosomes derived from highly metastatic lung cancer cells promoted the migration and invasion of lung cancer cells with low metastatic potential. Using lncRNA-seq, we found that a novel lncRNA, lnc-MLETA1, was upregulated in highly metastatic cells and their secreted exosomes. Overexpression of lnc-MLETA1 augmented cell migration and invasion of lung cancer. Conversely, knockdown of lnc-MLETA1 attenuated the motility and metastasis of lung cancer cells. Interestingly, exosome-transmitted lnc-MLETA1 promoted cell motility and metastasis of lung cancer. Reciprocally, targeting lnc-MLETA1 with an LNA suppressed exosome-induced lung cancer cell motility. Mechanistically, lnc-MLETA1 regulated the expression of EGFR and IGF1R by sponging miR-186-5p and miR-497-5p to facilitate cell motility. The clinical datasets revealed that lnc-MLETA1 is upregulated in tumor tissues and predicts survival in lung cancer patients. Importantly, the levels of exosomal lnc-MLETA1 in plasma were positively correlated with metastasis in lung cancer patients. CONCLUSIONS: This study identifies lnc-MLETA1 as a critical exosomal lncRNA that mediates crosstalk in lung cancer cells to promote cancer metastasis and may serve as a prognostic biomarker and potential therapeutic target for lung cancer diagnosis and treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimiento Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor IGF Tipo 1/genética
2.
Sci Adv ; 9(14): eade9944, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027467

RESUMEN

Immune checkpoint inhibitors (ICIs) targeting PD-L1 immunotherapy are state-of-the-art treatments for advanced non-small cell lung cancer (NSCLC). However, the treatment response of certain patients with NSCLC is unsatisfactory because of an unfavorable tumor microenvironment (TME) and poor permeability of antibody-based ICIs. In this study, we aimed to discover small-molecule drugs that can modulate the TME to enhance ICI treatment efficacy in NSCLC in vitro and in vivo. We identified a PD-L1 protein-modulating small molecule, PIK-93, using a cell-based global protein stability (GPS) screening system. PIK-93 mediated PD-L1 ubiquitination by enhancing the PD-L1-Cullin-4A interaction. PIK-93 reduced PD-L1 levels on M1 macrophages and enhanced M1 antitumor cytotoxicity. Combined PIK-93 and anti-PD-L1 antibody treatment enhanced T cell activation, inhibited tumor growth, and increased tumor-infiltrating lymphocyte (TIL) recruitment in syngeneic and human peripheral blood mononuclear cell (PBMC) line-derived xenograft mouse models. PIK-93 facilitates a treatment-favorable TME when combined with anti-PD-L1 antibodies, thereby enhancing PD-1/PD-L1 blockade cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Linfocitos Infiltrantes de Tumor
3.
EMBO Mol Med ; 14(11): e16818, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36256519

RESUMEN

There is an unmet clinical need to end the COVID-19 pandemic. In the past 2 years, the SARS-CoV-2 continued to evolve and poses a critical challenge to the efficacy of the vaccine and neutralizing antibody therapies. The fifth wave of the pandemic is driven by the Omicron variants, due to their ability to evade prior immunity and their resistance to therapeutic antibodies. The report by Zhang et al in the current issue of EMBO Molecular Medicine shows that the engineered decoy ACE2 can reduce lung injury and improve survival in K18-hACE2 transgenic mice inoculated with a lethal dose of the SARS-CoV-2 and potentially targets the Omicron variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Humanos , COVID-19/terapia , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias , Anticuerpos Neutralizantes/uso terapéutico , Ratones Transgénicos , Anticuerpos Antivirales
4.
EMBO Mol Med ; 13(1): e12828, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33159417

RESUMEN

To circumvent the devastating pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a humanized decoy antibody (ACE2-Fc fusion protein) was designed to target the interaction between viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). First, we demonstrated that ACE2-Fc could specifically abrogate virus replication by blocking the entry of SARS-CoV-2 spike-expressing pseudotyped virus into both ACE2-expressing lung cells and lung organoids. The impairment of viral entry was not affected by virus variants, since efficient inhibition was also observed in six SARS-CoV-2 clinical strains, including the D614G variants which have been shown to exhibit increased infectivity. The preservation of peptidase activity also enables ACE2-Fc to reduce the angiotensin II-mediated cytokine cascade. Furthermore, this Fc domain of ACE2-Fc was shown to activate NK cell degranulation after co-incubation with Spike-expressing H1975 cells. These promising characteristics potentiate the therapeutic prospects of ACE2-Fc as an effective treatment for COVID-19.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Antivirales/farmacología , COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Chlorocebus aethiops , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Células Vero
5.
Eur J Med Chem ; 181: 111584, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419740

RESUMEN

Developing new therapeutic strategies to overcome drug resistance of cancer cells is an ongoing endeavor. From among 2 million chemicals, we identified ethyl 4-oxo-2-phenyl-1,4-dihydroquinoline-6-carboxylate (AS1712) as a low-toxicity inhibitor of lung cancer cell proliferation and xenograft tumor growth. We show that AS1712 is active against broad cancer cell lines and is able to bind in the colchicine-binding pocket of ß-tubulin, thereby inhibiting microtubule assembly and, consequently, inducing mitotic arrest and apoptosis. Our cell-based structure-activity relationship study identified a new lead compound, RJ-LC-15-8, which had a greater anti-proliferative potency for H1975 cells than did AS1712, while maintaining a similar mechanism of action. Notably, AS1712 and RJ-LC-15-8 overcame P-glycoprotein efflux pump and ß-tubulin alterations that lead to acquired resistance against microtubule-targeting drugs of cancer cells. AS1712 and RJ-LC-15-8 may be lead compounds that overcome acquired resistance to microtubule-targeting agents of cancer cells.


Asunto(s)
Quinolonas/química , Quinolonas/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colchicina/metabolismo , Resistencia a Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...