Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Spine J ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847817

RESUMEN

BACKGROUND: Thoracic ossification of the ligamentum flavum (TOLF), a rare condition more prevalent in East Asia, is managed through open and endoscopic surgical approaches. Determining the superior surgical option remains unclear. This study assesses the safety and clinical outcomes associated with these approaches in TOLF patients. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic literature search up to August 5, 2023, across PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov. We included randomized controlled trials and cohort studies reporting complication rates, mJOA (modified Japanese Orthopedic Association) scores, JOA scores, VAS (Visual Analog Scale) scores, or hospitalization duration for both open and endoscopic surgeries in TOLF patients. RESULTS: We analyzed 37 studies encompassing 1,646 TOLF patients using a random-effects model. Our findings revealed a significant difference in complication rates (overall complication rates: 0.12; 95% CI: 0.07, 0.19; p < 0.01; I2: 69%; quality of evidence: moderate), with lower complication rates in the endoscopy group. However, no significant differences were observed in JOA scores (overall JOA: 8.35; 95% CI: 7.16, 9.54; p = 0.12; I2: 99%; quality of evidence: very low), VAS scores (overall VAS: 1.31; 95% CI: 1.03, 1.59; p = 0.35; I2: 91%; quality of evidence: very low), or hospitalization duration (hospital stay: 10.83 days; 95% CI: 6.86, 14.80; p = 0.35; I2: 91%; quality of evidence: very low) between the open and endoscopic groups. CONCLUSIONS: This meta-analysis reports lower complication rates and improved postoperative mJOA scores for endoscopic surgery in TOLF patients compared to open surgery. It represents the first comprehensive evaluation of clinical outcomes and safety of different surgical approaches for TOLF patients. Further randomized controlled trials are essential to validate these findings.

2.
Cell Transplant ; 33: 9636897231221882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38205679

RESUMEN

The current study aimed to determine the safety profile of intra-articular-injected allogeneic adipose-derived mesenchymal stem cells (ADSCs) GXCPC1 in subjects with knee osteoarthritis (OA) and its preliminary efficacy outcome. The 3 + 3 phase I study was designed with two dose-escalation cohorts: low dose (6.7 × 106 GXCPC1, N = 5) and high dose (4 × 107 GXCPC1, N = 6). The primary endpoint was safety, which was evaluated by recording adverse events throughout the trial; the secondary endpoints included total, pain, stiffness, and function subscales of the Western Ontario and McMaster Universities Arthritis Index (WOMAC), Visual Analogue Scale (VAS) for pain, and 12-Item Short Form (SF-12) health survey questionnaire. The GXCPC1 treatment was found to be safe after 1 year of follow-up with no treatment-related severe adverse events observed. When compared to baseline, subjects in both the low- and high-dose cohorts demonstrated improving trends in pain and knee function after receiving GXCPC1 treatment. Generally, the net change in pain (95% confidence interval (CI) = -7.773 to -2.561t at 12 weeks compared to baseline) and knee function (95% CI = -24.297 to -10.036t at 12 weeks compared to baseline) was better in subjects receiving high-dose GXCPC1. Although this study included a limited number of subjects without a placebo arm, it showed that the intra-articular injection of ADSCs was safe and well-tolerated in subjects with therapeutic alternatives to treat knee OA. However, a larger scale study with an appropriate control would be necessary for clinical efficacy in the following study.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Humanos , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/terapia , Dolor , Proyectos Piloto
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108239

RESUMEN

Osteoarthritis (OA) is a degenerative disease that causes pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for OA treatment. However, the 2D culture of MSCs could potentially affect their characteristics and functionality. In this study, calcium-alginate (Ca-Ag) scaffolds were prepared for human adipose-derived stem cell (hADSC) proliferation with a homemade functionally closed process bioreactor system; the feasibility of cultured hADSC spheres in heterologous stem cell therapy for OA treatment was then evaluated. hADSC spheres were collected from Ca-Ag scaffolds by removing calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation. In this study, 2D-cultured individual hADSCs or hADSC spheres were evaluated for treatment efficacy in a monosodium iodoacetate (MIA)-induced OA rat model. The results of gait analysis and histological sectioning showed that hADSC spheres were more effective at relieving arthritis degeneration. The results of serological and blood element analyses of hADSC-treated rats indicated that the hADSC spheres were a safe treatment in vivo. This study demonstrates that hADSC spheres are a promising treatment for OA and can be applied to other stem cell therapies or regenerative medical treatments.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Ratas , Humanos , Animales , Calcio/efectos adversos , Alginatos/efectos adversos , Osteoartritis/inducido químicamente , Osteoartritis/terapia , Osteoartritis/patología , Adipocitos/patología , Modelos Animales de Enfermedad
4.
Tissue Eng Regen Med ; 19(6): 1295-1310, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36346531

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are derived from internal cellular compartments, and have potential as a diagnostic and therapeutic tool in degenerative disease associated with aging. Mesenchymal stem cells (MSCs) have become a promising tool for functional EVs production. This study investigated the efficacy of EVs and its effect on differentiation capacity. METHODS: The characteristics of MSCs were evaluated by flow cytometry and stem cell differentiation analysis, and a production mode of functional EVs was scaled from MSCs. The concentration and size of EVs were quantitated by Nanoparticle Tracking Analysis (NTA). Western blot analysis was used to assess the protein expression of exosome-specific markers. The effects of MSC-derived EVs were assessed by chondrogenic and adipogenic differentiation analyses and histological observation. RESULTS: The range of the particle size of adipose-derived stem cells (ADSCs)- and Wharton's jelly -MSCs-derived EVs were from 130 to 150 nm as measured by NTA, which showed positive expression of exosomal markers. The chondrogenic induction ability was weakened in the absence of EVs in vitro. Interestingly, after EV administration, type II collagen, a major component in the cartilage extracellular matrix, was upregulated compared to the EV-free condition. Moreover, EVs decreased the lipid accumulation rate during adipogenic induction. CONCLUSION: The results indicated that the production model could facilitate production of effective EVs and further demonstrated the role of MSC-derived EVs in cell differentiation. MSC-derived EVs could be successfully used in cell-free therapy to guide chondrogenic differentiation of ADSC for future clinical applications in cartilage regeneration.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Adipogénesis , Condrocitos , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular
5.
Cell Transplant ; 31: 9636897221106995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36002988

RESUMEN

The global population of individuals afflicted with diabetes mellitus has been increasing year by year, and this disease poses a serious threat to human health as well as the economies worldwide. Pancreatic or islet transplantations provide one of the most effective and long-term therapies available to treat diabetes, but the scarcity and quality of pancreatic islets limit their use in treatments. Here, we report the development of a one-step, monolayer culture, and chemical-based protocol that efficiently mediates the differentiation of human adipose-derived stem cells (hADSCs) into insulin-producing cells (IPCs). Our data indicate that hADSCs in monolayer culture that are allowed to differentiate into IPCs are superior to those in suspension cultures with respect to insulin secretion capacity (213-fold increase), cell viability (93.5 ± 3.27% vs. 41.67 ± 13.17%), and response to glucose stimulation. Moreover, the expression of genes associated with pancreatic lineage specification, such as PDX1, ISL1, and INS (encoding insulin), were expressed at significantly higher levels during our differentiation protocol (6-fold for PDX1 and ISL1, 11.5-fold for INS). Importantly, in vivo studies demonstrated that transplantation with IPCs significantly mitigated hyperglycemia in streptozotocin-induced diabetic rats. Our results indicate that this one-step, rapid protocol increases the efficiency of IPC generation and that the chemical-based approach for IPC induction may reduce safety concerns associated with the use of IPCs for clinical applications, thereby providing a safe and effective cell-based treatment for diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Células Secretoras de Insulina , Animales , Diferenciación Celular/fisiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Humanos , Hiperglucemia/terapia , Insulina/metabolismo , Ratas , Células Madre , Estreptozocina
6.
J Tissue Eng Regen Med ; 16(1): 3-13, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644444

RESUMEN

Current therapy does not provide significant benefits for patients with chronic stroke. Pre-clinical studies suggested that autologous adipose-derived stem cells have benefits for the treatment of chronic stroke. This Phase I open-label study was conducted to demonstrate the safety and efficacy of autologous adipose-derived stem cells (GXNPC1) in chronic stroke. Three patients with chronic stroke were treated with stereotactic implantation of autologous adipose-derived stem cells (1 × 108 cells). The primary endpoints of safety evaluation included adverse events, over a 6 months post-implantation period. The secondary endpoints included improvements in neurological functions. Evolutional change of brain parenchyma was also followed with magnetic resonance imaging (MRI). All three participants improved significantly at 6 months follow-up. The extent of improvement from pre-treatment was: National Institutes of Health Stroke Scale improved 5-15 points, Barthel Index: 25-50 points, Berg balance scale 0-21 points and Fugl-Meyer modified sensation 3-28 points. All three patients had signal change along the implantation tract on MRI one month after surgery. There is no related safety issue through 6 months observation. Clinical measures of neurological symptoms of these patients with chronic stroke improved at 6 months without adverse effects after implantation of autologous adipose-derived stem cells (GXNPC1), which might be correlated with post-implantation changes on brain MRI. Clinical Trial Registration-URL: https://clinicaltrials.gov/ct2/show/NCT02813512?term=ADSC&cond=Stroke&cntry=TW&draw=2&rank=1 Unique identifier: NCT02813512.


Asunto(s)
Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Accidente Cerebrovascular , Tejido Adiposo , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Accidente Cerebrovascular/terapia , Trasplante Autólogo , Resultado del Tratamiento
7.
J Mol Med (Berl) ; 99(12): 1815-1827, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34633469

RESUMEN

Cognitive impairment is a serious side effect of post-myocardial infarction (MI) course. We have recently demonstrated that human adipose-derived stem cells (hADSCs) ameliorated myocardial injury after MI by attenuating reactive oxygen species (ROS) levels. Here, we studied whether the beneficial effects of intramyocardial hADSC transplantation can extend to the brain and how they may attenuate cognitive dysfunction via modulating ROS after MI. After coronary ligation, male Wistar rats were randomized via an intramyocardial route to receive either vehicle, hADSC transplantation (1 × 106 cells), or the combination of hADSCs and 3-Morpholinosydnonimine (SIN-1, a peroxynitrite donor). Whether hADSCs migrated into the hippocampus was assessed by using human-specific primers in qPCR reactions. Passive avoidance test was used to assess cognitive performance. Postinfarction was associated with increased oxidative stress in the myocardium, circulation, and hippocampus. This was coupled with decreased numbers of dendritic spines as well as a significant downregulation of synaptic plasticity consisting of synaptophysin and PSD95. Step-through latency during passive avoidance test was impaired in vehicle-treated rats after MI. Intramyocardial hADSC injection exerted therapeutic benefits in improving cardiac function and cognitive impairment. None of hADSCs was detected in rat's hippocampus at the 3rd day after intramyocardial injection. The beneficial effects of hADSCs on MI-induced histological and cognitive changes were abolished after adding SIN-1. MI-induced ROS attacked the hippocampus to induce neurodegeneration, resulting in cognitive deficit. The remotely intramyocardial administration of hADSCs has the capacity of improved synaptic neuroplasticity in the hippocampus mediated by ROS, not the cell engraftment, after MI. KEY MESSAGES: Human adipose-derived stem cells (hADSCs) ameliorated injury after myocardial infarction by attenuating reactive oxygen species (ROS) levels. Intramyocardial administration of hADSCs remotely exerted therapeutic benefits in improving cognitive impairment after myocardial infarction. The improved synaptic neuroplasticity in the hippocampus was mediated by hADSC-inhibiting ROS, not by the stem cell engraftment.


Asunto(s)
Tejido Adiposo/citología , Disfunción Cognitiva/terapia , Infarto del Miocardio/terapia , Trasplante de Células Madre , Animales , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Humanos , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Estrés Oxidativo , Ratas Wistar , Células Madre , Superóxidos/sangre , Superóxidos/metabolismo , Microglobulina beta-2/metabolismo
8.
Metab Eng Commun ; 12: e00164, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33659180

RESUMEN

Terpenoids are a large and diverse group of natural products with commercial applications. Microbial production of terpenes is considered as a feasible approach for the stable supply of these complex hydrocarbons. Cyanobacteria, photosynthetic prokaryotes, are attractive hosts for sustainable bioproduction, because these autotrophs require only light and CO2 for growth. Despite cyanobacteria having been engineered to produce a variety of compounds, their productivities of terpenes are generally low. Further research is needed to determine the bottleneck reactions for enhancing terpene production in cyanobacteria. In this study, we engineered the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce a commercially-used terpenoid, limonene. We identified a beneficial mutation in the gene encoding geranylgeranyl pyrophosphate synthase crtE, leading to a 2.5-fold increase in limonene production. The engineered strain produced 16.4 â€‹mg â€‹L-1 of limonene at a rate of 8.2 â€‹mg â€‹L-1 day-1, which is 8-fold higher than limonene productivities previously reported in other cyanobacterial species. Furthermore, we employed a combinatorial metabolic engineering approach to optimize genes involved in the upstream pathway of limonene biosynthesis. By modulating the expression of genes encoding the enzymes in the MEP pathway and the geranyl pyrophosphate synthase, we showed that optimization of the expression level is critical to enhance limonene production in cyanobacteria.

9.
J Cell Mol Med ; 24(21): 12272-12284, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33022900

RESUMEN

Functional decline of stem cell transplantation in ageing hosts is well documented. The mechanism for this is poorly understood, although it is known that advancing age does not provide an optimal milieu for exogenous stem cells to survive, engraft and differentiate. We showed that n-butylidenephthalide improved human adipose-derived stem cell (hADSC) engraftment via attenuating the production of reactive oxygen species (ROS). It remained unclear whether pre-treated hosts with n-butylidenephthalide can rejuvenate the ageing heart and improve hADSC engraftment by regulating the ROS/NLRP3 inflammasome-mediated cardiac fibrosis after myocardial infarction. One hour after coronary ligation, hADSCs were transplanted into the hearts of young and ageing Wistar rats that were pre-treated with or without n-butylidenephthalide for 3 days. At day 3 after infarction, myocardial infarction was associated with an increase in ROS levels and NLRP3 inflammasome activity with age. hADSC transplant effectively provided a significant decrease in ROS levels, NLRP3 inflammasome activity, IL-1ß levels and cardiac fibrosis in either young or old infarcted rats. However, the beneficial effects of hADSCs were greater in young compared with old rats in terms of NLRP3 inflammasome activity. The infarcted ageing rats pre-conditioned by n-butylidenephthalide improved engraftment and differentiation of hADSCs and additionally attenuated cardiac fibrosis compared with hADSCs alone. The anti-inflammation effects of n-butylidenephthalide were reversed by SIN-1. In conclusions, the increased NLRP3 inflammasome activity plays the pathogenesis of ageing-related functional hADSC decline in the ageing hosts. n-butylidenephthalide-pre-treated ageing hosts reversibly ameliorate the harsh microenvironments, improve stem cell engraftment and attenuate cardiac fibrosis after myocardial infarction.


Asunto(s)
Tejido Adiposo/citología , Envejecimiento , Inflamasomas/metabolismo , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/fisiopatología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trasplante de Células Madre , Animales , Diferenciación Celular , Fibrosis , Hemodinámica , Humanos , Interleucina-1beta/metabolismo , Masculino , Miocardio/patología , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fenotipo , Anhídridos Ftálicos/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Superóxidos/metabolismo
10.
Cell Transplant ; 29: 963689720927398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32648485

RESUMEN

Osteoporotic fracture is the main complication of osteoporosis (OP) and accounts for millions of injuries annually. Local intervention by intra-marrow injection has been a good option for preventing osteoporotic bone loss when the osteoporotic femoral fracture has been treated. In this study, tail vein transplantations were examined to evaluate the cell-based therapeutic approach for treating OP with adipose-derived stem cells (ADSCs) and platelet-rich fibrin releasates (PRFr) in an ovariectomized (OVX) mice model. Thirty-six 12-wk-old female ICR mice were randomly divided into six groups: untreated control; sham-operated; OVX-control; OVX-ADSCs; OVX-PRFr; and OVX-ADSCs+PRFr. Starting 8 wk after ovariectomy, the OVX mice received tail vein injections once each week for four consecutive weeks, then were evaluated radiographically and histopathologically 8 wk after the first injection. We also assessed changes to bone trabeculae in the proximal tibial growth plate. In OVX mice treated with ADSCs or PRFr alone, or with a combination of ADSCs and PRFr, the trabecular bone mineral density (BMD), bone volume ratios (BV/TV), and numbers (Tb.N) in the proximal tibia areas were significantly higher than that in the OVX-control group. Significant differences between OVX-treated mice and OVX controls were found for trabecular separation, but not for trabecular thickness. These results indicate that ADSCs or PRFr treatment enhances bone microarchitecture in OP. The treatment of bone loss of OVX mice with ADSCs+PRFr induced greater bone consolidation with bone tissue production (P < 0.01) when compared to the others. Thus, we conclude that the transplantation of ADSCs combined with PRFr might provide an alternative strategy for the treatment of various bone disorders in OP with an unlimited source of cells and releasates.


Asunto(s)
Tejido Adiposo/trasplante , Osteoporosis/cirugía , Osteoporosis/terapia , Fibrina Rica en Plaquetas/metabolismo , Trasplante de Células Madre/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Conejos
11.
Cell Transplant ; 29: 963689720919438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32538130

RESUMEN

Sciatic nerve injuries, not uncommon in trauma with a limited degree of functional recovery, are considered a persistent clinical, social, and economic problem worldwide. Accumulating evidence suggests that stem cells can promote the tissue regeneration through various mechanisms. The aim of the present study was to investigate the role of adipose tissue-derived stem cells (ADSCs) and combine with platelet-rich fibrin releasate (PRFr) in the regeneration of sciatic nerve injury in rats. Twenty-four Sprague-Dawley rats were randomly assigned to four groups, a blade was used to transect the left hindlimb sciatic nerve, and silicon tubes containing one of the following (by injection) were used to bridge the nerve proximal and distal ends (10-mm gap): group 1: untreated controls; group 2: PRFr alone; group 3: ADSCs alone; group 4: PRFr + ADSCs-treated. Walking function was assessed in horizontal rung ladder apparatus to compare the demands of the tasks and test sensitivity at 1-mo interval for a total of 3 mo. The gross inspection and histological examination was performed at 3 mo post transplantation. Overall, PRFr + ADSCs-treated performed better compared with PRFr or ADSCs injections alone. Significant group differences of neurological function were observed in ladder rung walking tests in all treated groups compared to that of untreated controls (P < 0.05). This injection approach may provide a successfully employed technique to target sciatic nerve defects in vivo, and the combined strategy of ADSCs with PRFr appears to have a superior effect on nerve repair.


Asunto(s)
Tejido Adiposo/fisiopatología , Fibrina Rica en Plaquetas/metabolismo , Nervio Ciático/fisiopatología , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Sprague-Dawley
12.
Phys Rev E ; 101(2-1): 023210, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168674

RESUMEN

We experimentally investigate the cooperative excitations in the transition from a self-excited three-dimensional ordered plane wave to a defect-mediated turbulence (DMT) state with multiple unstable defect filaments in a dusty plasma system. It is found that, with increasing effective driving, a single acoustic vortex (AV) with positive or negative helicity winding around a long straight defect filament with small wiggling in the 2+1D (dimensional) space-time space starts to emerge along the center axis of the small dust cluster. The sequential ruptures of the crest surfaces from the cluster boundary followed by their reconnection with adjacent ruptured crest surfaces, or repelling one of the pairwise generated defects out of the boundary, are the key for the single AV generation. Further increasing driving makes the single defect filament exhibit helical excursion in the 2+1D space. The system eventually enters the state with a few short-lived AVs and the DMT state with multiple AVs. The gradual increasing defect filament fluctuations and defect number in the transition to the DMT more strongly distort the nearby waveforms, which leads to the transition from the emergence of distinct sideband peaks to the broadened peaks in the power spectra of temporal dust density fluctuation. For the system with a larger cluster size, the single AV states are skipped in the transition to the DMT state.

13.
Sci Rep ; 10(1): 390, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942010

RESUMEN

Cyanobacteria are attractive microbial hosts for production of chemicals using light and CO2. However, their low productivity of chemicals is a major challenge for commercial applications. This is mostly due to their relatively slow growth rate and carbon partitioning toward biomass rather than products. Many cyanobacterial strains synthesize sucrose as an osmoprotectant to cope with salt stress environments. In this study, we harnessed the photosynthetic machinery of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce sucrose under salt stress conditions and investigated if the high efficiency of photosynthesis can enhance the productivity of sucrose. By expressing the sucrose transporter CscB, Synechococcus 2973 produced 8 g L-1 of sucrose with a highest productivity of 1.9 g L-1 day-1 under salt stress conditions. The salt stress activated the sucrose biosynthetic pathway mostly via upregulating the sps gene, which encodes the rate-limiting sucrose-phosphate synthase enzyme. To alleviate the demand on high concentrations of salt for sucrose production, we further overexpressed the sucrose synthesis genes in Synechococcus 2973. The engineered strain produced sucrose with a productivity of 1.1 g L-1 day-1 without the need of salt induction. The engineered Synechococcus 2973 in this study demonstrated the highest productivity of sucrose in cyanobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Glucosiltransferasas/metabolismo , Ingeniería Metabólica , Sacarosa/metabolismo , Synechococcus/metabolismo , Synechococcus/crecimiento & desarrollo
14.
Cell Transplant ; 28(1_suppl): 100S-111S, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31722556

RESUMEN

Currently, the only effective therapy for cirrhosis of the liver is liver transplantation. However, finding a compatible liver is difficult due to the low supply of healthy livers and the ever-increasing demand. However, stem-cell therapy may offer a solution for liver cirrhosis; for example, GXHPC1 therapy preparation contains adipose-derived mesenchymal stem cells (AD-MSCs) and was developed for the treatment of liver cirrhosis. In our previous report, animal studies suggested that treatment of a diseased liver via GXHPC1 transplantation can abrogate liver fibrosis and facilitate recovery of liver function. In our current human trial, patients with liver cirrhosis were included. Their adipose tissue was harvested from the subcutaneous fat of the abdominal wall during surgery. AD-MSCs were cultured and suspended at a concentration of 100 million cells in 1 ml of physiological saline (i.e., GXHPC1). This human study passed the Taiwan Food and Drug Administration IND inspection and received Phase I clinical trial permission. The trial was conducted with six patients with liver cirrhosis to demonstrate the safety and efficacy of administering GXHPC1. Intrahepatic injection of GXHPC1 did not cause any safety issues in the analysis of adverse drug reactions and suspected unexpected serious adverse reactions, and showed a tendency for improvement of liver function, METAVIR score, Child-Pugh score, MELD score, and quality of life for patients with liver cirrhosis.


Asunto(s)
Tejido Adiposo/citología , Cirrosis Hepática/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Tejido Adiposo/cirugía , Adulto , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/patología , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Calidad de Vida , Trasplante Autólogo/efectos adversos , Trasplante Autólogo/métodos
15.
Redox Biol ; 27: 101170, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31164286

RESUMEN

Left ventricular hypertrophy (LVH) in hypertension has prognostic significance on cardiovascular mortality and morbidity. Recently, we have shown that n-butylidenephthalide (BP) improves human adipose-derived stem cell (hADSC) engraftment via attenuated reactive oxygen species (ROS) production. This prompted us to investigate whether remote transplantation of BP-pretreated hADSCs confers attenuated LVH at an established phase of hypertension. Male spontaneously hypertensive rats (SHRs) aged 12 weeks were randomly allocated to receive right hamstring injection of vehicle, clinical-grade hADSCs, and BP-preconditioned hADSCs for 8 weeks. As compared with untreated SHRs, naïve hADSCs decreased the ratio of LV weight to tibia, cardiomyocyte cell size, and collagen deposition independent of hemodynamic changes. These changes were accompanied by attenuated myocardial ROS production and increased p-STAT3 levels. Compared with naïve hADSCs, BP-preconditioned hADSCs provided a further decrease of ROS and LVH and an increase of local hADSC engraftment, STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels, and the percentage of M2 macrophage infiltration. SIN-1 or S3I-201 reversed the effects of BP-preconditioned ADSCs increase on myocardial IL-10 levels. Furthermore, SIN-1 abolished the phosphorylation of STAT3, whereas superoxide levels were not affected following the inhibition of STAT3. Our results highlighted the feasibility of remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy even at an established phase of hypertension. BP-pretreated hADSCs polarize macrophages into M2 immunoregulatory cells more efficiently than naïve hADSCs via ROS/STAT3 pathway.


Asunto(s)
Tejido Adiposo/fisiopatología , Cardiomegalia/fisiopatología , Hipertensión/fisiopatología , Macrófagos/fisiología , Células Madre/fisiología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/fisiología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Cardiomegalia/metabolismo , Humanos , Hipertensión/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Interleucina-10/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Anhídridos Ftálicos/farmacología , Ratas , Ratas Endogámicas SHR , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
16.
Lab Invest ; 99(5): 634-647, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683900

RESUMEN

Stem cells can modify macrophage phenotypes; however, the mechanisms remain unclear. We investigated whether n-butylidenephthalide (BP) primed adipose-derived stem cells (ADSCs) attenuated cardiac fibrosis via regulating macrophage phenotype by a PI3K/STAT3-dependent pathway in postinfarcted rats. Male Wistar rats after coronary ligation were allocated to receive either intramyocardial injection of vehicle, ADSCs (1 × 106 cells), BP-preconditioned ADSCs, (BP + lithium)-preconditioned ADSCs, (BP + LY294002)-preconditioned ADSCs, and (BP + S3I-201)-preconditioned ADSCs. ADSCs were primed for 16 h before implantation. BP-pretreated ADSCs increased the cell viability compared with naive ADSCs in the in vitro experiments. Infarct sizes were similar among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased M1 macrophage infiltration, which was inhibited by administering naive ADSCs. Compared with naive ADSCs, BP-preconditioned ADSCs provided a significant increase of Akt and STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels, and the percentage of M2 macrophage infiltration. The effects of BP on M2 polarization were reversed by LY294002 or S3I-201. Furthermore, the phosphorylation of both Akt and STAT3 was abolished by LY294002, whereas Akt phosphorylation was not affected following the inhibition of STAT3. The addition of lithium did not have additional effects compared with BP alone. After 4 weeks of implantation, ADSCs remained in the myocardium, and reduced fibrosis and improved cardiac function. BP-preconditioned ADSCs provided superior cardioprotection, greater ADSC engraftment, and antifibrotic effects compared with naive ADSCs. These results suggest that BP-pretreated ADSCs polarize macrophages into M2 cells more efficiently than naive ADSCs via the PI3K/STAT3 pathway.


Asunto(s)
Adipocitos/citología , Activación de Macrófagos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Anhídridos Ftálicos/farmacología , Factor de Transcripción STAT3/metabolismo , Células Madre/efectos de los fármacos , Animales , Cardiotónicos/farmacología , Células Cultivadas , Cromonas/farmacología , Fibrosis/prevención & control , Humanos , Litio/farmacología , Masculino , Morfolinas/farmacología , Infarto del Miocardio/metabolismo , Miocardio/patología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo
17.
Planta ; 249(1): 145-154, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30465115

RESUMEN

MAIN CONCLUSION: This review summarizes recent advances in cyanobacterial terpenoid production. The challenges and opportunities of improving terpenoid production by cyanobacteria are discussed. Terpenoids are a diverse group of natural products with a variety of commercial applications. With recent advances in synthetic biology and metabolic engineering, microbial terpenoid synthesis is being viewed as a feasible approach for industrial production. Among different microbial hosts, cyanobacteria have the potential of sustainable production of terpenoids using light and CO2. Terpene synthases and the precursor pathways have been expressed in cyanobacteria for enhanced production of various terpene hydrocarbons, including isoprene, limonene, ß-phellandrene, and farnesene. However, the productivities need to be further improved for commercial production. Many barriers remain to be overcome in order to efficiently convert CO2 to terpenoids. In this review, we will summarize recent efforts on photosynthetic production of terpenoids and discuss the challenges and opportunities of engineering cyanobacteria for terpenoid bioproduction.


Asunto(s)
Cianobacterias/metabolismo , Terpenos/metabolismo , Luz , Ingeniería Metabólica
18.
Phys Rev Lett ; 120(13): 135004, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694209

RESUMEN

In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2+1D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

19.
mBio ; 9(1)2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29437923

RESUMEN

At the genome level, Synechococcus elongatus UTEX 2973 (Synechococcus 2973) is nearly identical to the model cyanobacterium Synechococcus elongatus PCC 7942 (Synechococcus 7942) with only 55 single nucleotide differences separating the two strains. Despite the high similarity between the two strains, Synechococcus 2973 grows three times faster, accumulates significantly more glycogen, is tolerant to extremely high light intensities, and displays higher photosynthetic rates. The high homology between the two strains provides a unique opportunity to examine the factors that lead to increased photosynthetic rates. We compared the photophysiology of the two strains and determined the differences in Synechococcus 2973 that lead to increased photosynthetic rates and the concomitant increase in biomass production. In this study, we identified inefficiencies in the electron transport chain of Synechococcus 7942 that have been alleviated in Synechococcus 2973. Photosystem II (PSII) capacity is the same in both strains. However, Synechococcus 2973 exhibits a 1.6-fold increase in PSI content, a 1.5-fold increase in cytochrome b6f content, and a 2.4-fold increase in plastocyanin content on a per cell basis. The increased content of electron carriers allows a higher flux of electrons through the photosynthetic electron transport chain, while the increased PSI content provides more oxidizing power to maintain upstream carriers ready to accept electrons. These changes serve to increase the photosynthetic efficiency of Synechococcus 2973, the fastest growing cyanobacterium known.IMPORTANCE As the global population increases, the amount of arable land continues to decrease. To prevent a looming food crisis, crop productivity per acre must increase. A promising target for improving crop productivity is increasing the photosynthetic rates in crop plants. Cyanobacteria serve as models for higher plant photosynthetic systems and are an important test bed for improvements in photosynthetic productivity. In this study, we identified key factors that lead to improved photosynthetic efficiency and increased production of biomass of a cyanobacterium. We suggest that the findings presented herein will give direction to improvements that may be made in other photosynthetic organisms to improve photosynthetic efficiency.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Synechococcus/crecimiento & desarrollo , Synechococcus/metabolismo , Transporte de Electrón , Oxidación-Reducción
20.
Sci Rep ; 7(1): 17503, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235513

RESUMEN

Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.


Asunto(s)
Limoneno/metabolismo , Ingeniería Metabólica , Vía de Pentosa Fosfato , Synechocystis/metabolismo , Algoritmos , Citrus , Diseño Asistido por Computadora , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Mentha spicata , Ingeniería Metabólica/métodos , Vía de Pentosa Fosfato/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Synechocystis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...