RESUMEN
Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.
Asunto(s)
Córnea , Neovascularización de la Córnea , Nanopartículas , Soluciones Oftálmicas , Neovascularización de la Córnea/tratamiento farmacológico , Animales , Nanopartículas/química , Soluciones Oftálmicas/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Ratones , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Tamaño de la Partícula , Humanos , Masculino , Ratones Endogámicos C57BL , ConejosRESUMEN
The booming development of artificial intelligence (AI) has brought excitement to many research fields that could benefit from its big data analysis capability for causative relationship establishment and knowledge generation. In toxicology studies using zebrafish, the microscopic images and videos that illustrate the developmental stages, phenotypic morphologies, and animal behaviors possess great potential to facilitate rapid hazard assessment and dissection of the toxicity mechanism of environmental pollutants. However, the traditional manual observation approach is both labor-intensive and time-consuming. In this Perspective, we aim to summarize the current AI-enabled image and video analysis tools to realize the full potential of AI. For image analysis, AI-based tools allow fast and objective determination of morphological features and extraction of quantitative information from images of various sorts. The advantages of providing accurate and reproducible results while avoiding human intervention play a critical role in speeding up the screening process. For video analysis, AI-based tools enable the tracking of dynamic changes in both microscopic cellular events and macroscopic animal behaviors. The subtle changes revealed by video analysis could serve as sensitive indicators of adverse outcomes. With AI-based toxicity analysis in its infancy, exciting developments and applications are expected to appear in the years to come.
Asunto(s)
Inteligencia Artificial , Pez Cebra , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Ecotoxicología , Pruebas de Toxicidad/métodosRESUMEN
Nanoplastics (NPs) have raised concerns about the combined toxicity to living organisms due to their ability to adsorb heavy metals. There is still uncertainty, however, whether NPs combined with heavy metals exert adverse effects on intestinal microenvironment, especially the intestinal cells and microbiota. Herein, the combined effects of 500 nm spherical-shaped polystyrene nanoplastics (PSNPs) and copper ions (Cu2+) on intestinal cells and gut microbiota were assessed using HCT-116 cells and zebrafish models. The combined exposure of PSNPs (10 mg/L) and Cu2+ (0.5 mg/L) induced more severer hatching interference of zebrafish embryos, deformation, and mortality. In larval stage, PSNPs (10 mg/L) accumulated and carried more Cu2+ in the gastrointestinal tract (GIT) of zebrafish after co-exposure for 5 days. Excessive neutrophil recruitment and oxidative stress in GIT of zebrafish larvae were observed. The mechanism of the combined toxicity was revealed by transmission electron microscopy (TEM) showing the injuries of GIT, transcriptome and 16S rDNA gene sequencing showing the toxicity pathways, including oxidative phosphorylation and respiratory electron transport chain, as well as microbial community analysis showing the induced microbiota dysbiosis. In vitro tests using HCT-116 cells showed that PSNPs (10 mg/L) and Cu2+ (0.5 mg/L) increased cell death while decreasing ATP concentration and mitochondrial membrane potential after 48 h exposure. These findings may provide new insights into the combined toxicity of nanoplastics and heavy metals in the intestinal microenvironment.
Asunto(s)
Cobre , Mitocondrias , Poliestirenos , Pez Cebra , Animales , Cobre/toxicidad , Poliestirenos/toxicidad , Mitocondrias/efectos de los fármacos , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Humanos , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidadRESUMEN
Dry eye disease (DED) is a multifactorial condition affecting the ocular surface. It is characterized by loss of tear film homeostasis and accompanied by ocular symptoms that may potentially result in damage to the ocular surface and even vision loss. Unmodifiable risk factors for DED mainly include aging, hormonal changes, and lifestyle issues such as reduced sleep duration, increased screen exposure, smoking, and ethanol consumption. As its prevalence continues to rise, DED has garnered considerable attention, prompting the exploration of potential new therapeutic targets. Recent studies have found that when the production of ROS exceeds the capacity of the antioxidant defense system on the ocular surface, oxidative stress ensues, leading to cellular apoptosis and further oxidative damage. These events can exacerbate inflammation and cellular stress responses, further increasing ROS levels and promoting a vicious cycle of oxidative stress in DED. Therefore, given the central role of reactive oxygen species in the vicious cycle of inflammation in DED, strategies involving antioxidants have emerged as a novel approach for its treatment. This review aims to enhance our understanding of the intricate relationship between oxidative stress and DED, thereby providing directions to explore innovative therapeutic approaches for this complex ocular disorder.
RESUMEN
Recycling vanadium from alternative sources is essential due to its expanding demand, depletion in natural sources, and environmental issues with terrestrial mining. Here, we present a complexation-precipitation method to selectively recover pentavalent vanadium ions, V(V), from complex metal ion mixtures, using an acid-stable metal binding agent, the cyclic imidedioxime, naphthalimidedioxime (H2CIDIII). H2CIDIII showed high extraction capacity and fast binding towards V(V) with crystal structures showing a 1:1 M:L dimer, [V2(O)3(C12H6N3O2)2]2-, 1, and 1:2 M:L non-oxido, [V(C12H6N3O2)2] ̶ complex, 2. Complexation selectivity studies showed only 1 and 2 were anionic, allowing facile separation of the V(V) complexes by pH-controlled precipitation, removing the need for solid support. The tandem complexation-precipitation technique achieved high recovery selectivity for V(V) with a selectivity coefficient above 3 × 105 from synthetic mixed metal solutions and real oil sand tailings. Zebrafish toxicity assay confirmed the non-toxicity of 1 and 2, highlighting H2CIDIII's potential for practical and large-scale V(V) recovery.
RESUMEN
Resorcinol-formaldehyde (RF) resin represents a promising visible-light responding photocatalyst for oxygen reduction reaction (ORR) toward H2 O2 production. However, its photocatalytic ORR activity toward H2 O2 generation is still unsatisfied for practical application. Herein, 3-hydroxythiophenol-formaldehyde (3-HTPF) resin microspheres synthesized through polycondensation reaction between 3-HTP and formaldehyde at room temperature and subsequent hydrothermal treatment exhibit enhanced photocatalytic ORR activity is reported. The experimental results show that the partial substitution of hydroxy group (âOH) by sulfhydryl one (âSH) through using 3-HTP to replace resorcinol could slow the rates of nucleation and growth of the resin particles and lead to strongly π-stacked architecture in 3-HTPF. The introduction of âSH group can also improve adsorption ability of 3-HTPF to O2 molecules and enhance ORR catalytic activity of the photocatalysts. Stronger built-in electric field, better adsorption ability to O2 molecules, and increased surface catalytic activity collectively boost photocatalytic activity of 3-HTPF microspheres. As a result, H2 O2 production rate of 2010 µm h-1 is achieved over 3-HTPF microspheres at 273 K, which is 3.4 times larger than that obtained using RF submicrospheres (591 µm h-1 ). The rational substituent group modulation provides a new strategy for designing polymeric photocatalysts at the molecular level toward high-efficiency artificial photosynthesis.
RESUMEN
Despite improvements in reducing hunger in recent years, undernutrition remains a global public health problem. This study utilizes the swept-source optical coherence tomography (SS-OCT) technique to assess changes in retinal and choroidal thickness in underweight subjects. Ophthalmic examinations were conducted on all adults participating in this cross-sectional research. Depending on their body mass index (BMI), the participants were divided into two groups: the underweight group and the normal group. The study included the right eyes of the underweight adults and an equal number of age- and gender-matched normal-weight subjects. The retinal thickness showed no significant difference between the underweight and normal groups (P > 0.05 for all). In males, the retina of the center and inner ring in the underweight group was significantly thinner than that in the normal group, while no such results were found in females. The choroid in the underweight group was significantly thinner compared to that in the normal group (all P < 0.05). Being underweight may affect choroidal thickness in both males and females. In comparison with underweight females, underweight males may experience more retinal damage. These findings contribute to a better understanding of the pathogenesis underlying specific ocular diseases in malnourished individuals.
Asunto(s)
Delgadez , Tomografía de Coherencia Óptica , Adulto , Femenino , Masculino , Humanos , Estudios Transversales , Retina/diagnóstico por imagen , Coroides/diagnóstico por imagenRESUMEN
Severe dry eye (SDE) can cause grievous damage to the ocular surface and result in vision impairment and even blindness. To investigate the fate of limbal stem cells in SDE and the underlying mechanism, the current study established an SDE rat model by removing the extraorbital and infraorbital lacrimal glands and maintaining them in a low-humidity environment. One month after the surgery, aqueous tear secretion was reduced dramatically, blood vessels invaded into the central cornea, and inflammatory cells infiltrated into the limbal stroma. The expressions of keratin 12 and paired box gene 6 were down-regulated dramatically, while those of keratin 10, small proline-rich protein 1b, and mucin 5AC were up-regulated in the corneal epithelium of the SDE rats. Cell proliferation in the limbal epithelium was up-regulated, while the stem/progenitor marker adenosine 5'-triphosphate-binding cassette member 2 and the limbal epithelial colony-forming efficiency were decreased in the SDE condition. Furthermore, the p38 mitogen-activated protein kinase signaling pathway was activated in the limbal corneal epithelium of SDE rats. The abnormal differentiation and stemness loss in the corneal epithelium could be reversed upon treatment with a p38 inhibitor in a SDE in vivo model and in vitro hyperosmolar corneal epithelial culture conditions. These data suggest that SDE can lead to limbal stem cell dysfunction, and p38 mitogen-activated protein kinase signaling pathway activation plays an essential role in this process.
RESUMEN
The single-cell RNA-sequencing (scRNA-seq) technique is used to explore the biological characteristics of tissues under pathological and physiological conditions that include certain chronic eye diseases. Harvesting of single-cell suspensions is one challenge inherent to scRNA-seq procedures. This study aimed to use an optimized method to digest a whole mouse cornea to harvest single-cell suspensions. We utilized five different mouse cornea digestion methods to obtain single-cell suspensions: (1) 5 dissected mouse corneas were cut into pieces (â¼0.5 mm) and digested in trypsin for 10 min, and this digestion was repeated for 10 cycles; (2) 5 dissected mouse corneas were cut into pieces and incubated with 5 mg/ml collagenase A at 37 °C for 1h and then further digested in trypsin at 37 °C for 10 min; (3) used the same approach as that used in method 2, but the second digestion step was performed in TrypLE for 20 min; (4) used the same approach as that used in method 2, but the concentration of collagenase A was 2 mg/ml and the incubation time was 2h; (5) used the same approach as that used in method 3, but the corneas were incubated in 2 mg/ml collagenase A at 37 °C for 2h. Trypan blue staining was used to calculate the cell viability and agglomeration rate. The cell types and percentages were determined using immunofluorescence staining. RNA integrity number (RIN) was measured by Agilent 2100. Method 1 showed the lowest cell yield (0.375 × 105), epithelial cell percentage, and less than 70% cell viability, thus not a proper protocol. Method 2 showed the highest cell viability (over 90%), percentage of single-cell (89.53%), and high cell quantity (1.05 × 105). Method 3 had a significantly lower cell viability (55.30%). Cell agglomeration rates of method 4 and 5 reached up to 20% and 13%, and with lower cell viability (72.51%, 59.87%, respectively) and decreased epithelial cell rate compared to method 2 and 3. The results suggest that method 2 (5 mg/ml collagenase A and trypsin) is a preferred protocol for digesting mouse cornea to obtain single-cell suspension which achieves the criterion of single-cell RNA sequencing.
Asunto(s)
Colagenasas , Córnea , Ratones , Animales , Tripsina , Suspensiones , ARNRESUMEN
Mesenchymal stem cells have neuroprotective effects that limit damage to the retina and photoreceptors, and which may be mediated by extracellular vesicles (or exosomes) released by mesenchymal stem cells. To investigate the neuroprotective effect of extracellular vesicles derived from umbilical cord mesenchymal stem cells on glaucoma, we established rat models of chronic ocular hypertension by injecting conjunctival fibroblasts into the anterior chamber to mimic optic nerve injury caused by glaucoma. One week after injury, extracellular vesicles derived from umbilical cord-derived mesenchymal stem cells were injected into the vitreous cavity. We found that extracellular vesicles derived from mesenchymal stem cells substantially reduced retinal damage, increased the number of retinal ganglion cells, and inhibited the activation of caspase-3. These findings suggest that mesenchymal stem cell-derived extracellular vesicles can help alleviate optic nerve injury caused by chronic ocular hypertension, and this effect is achieved by inhibiting cell apoptosis.
RESUMEN
Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using in vivo models. Herein, we propose a deep learning-based morphometric analysis (DLMA) to quantitatively identify eight abnormal phenotypes (head hemorrhage, jaw malformation, uninflated swim bladder, pericardial edema, yolk edema, bent spine, dead, unhatched) and eight vital organ features (eye, head, jaw, heart, yolk, swim bladder, body length, and curvature) of zebrafish larvae. A data set composed of 2532 bright-field micrographs of zebrafish larvae at 120 h post fertilization was generated from toxicity screening of three categories of chemicals, i.e., endocrine disruptors (perfluorooctanesulfonate and bisphenol A), heavy metals (CdCl2 and PbI2), and emerging organic pollutants (acetaminophen, 2,7-dibromocarbazole, 3-monobromocarbazo, 3,6-dibromocarbazole, and 1,3,6,8-tetrabromocarbazo). Two typical deep learning models, one-stage and two-stage models (TensorMask, Mask R-CNN), were trained to implement phenotypic feature classification and segmentation. The accuracy was statistically validated with a mean average precision >0.93 in unlabeled data sets and a mean accuracy >0.86 in previously published data sets. Such a method effectively enables subjective morphometric analysis of zebrafish larvae to achieve efficient hazard identification of both chemicals and environmental pollutants.
Asunto(s)
Aprendizaje Profundo , Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Pez Cebra/genética , Embrión no Mamífero , Larva , Contaminantes Ambientales/toxicidad , Edema , Contaminantes Químicos del Agua/toxicidadRESUMEN
Controllable in situ formation of nanoclusters with discrete active sites is highly desirable in heterogeneous catalysis. Herein, a titanium oxide-based Fenton-like catalyst is constructed using exfoliated Ti3C2 MXene as a template. Theoretical calculations reveal that a redox reaction between the surface Ti-deficit vacancies of the exfoliated Ti3C2 MXene and H2O2 molecules facilitates the in situ conversion of surface defects into titanium oxide nanoclusters anchoring on amorphous carbon (TiOx@C). The presence of mixed-valence Tiδ+ (δ = 0, 2, 3, and 4) within TiOx@C is confirmed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) characterizations. The abundant surface defects within TiOx@C effectively promote the generation of reactive oxygen species (ROS) leading to superior and stable Fenton-like catalytic degradation of atrazine, a typical agricultural herbicide. Such an in situ construction of Fenton-like catalysts through defect engineering also applies to other MXene family materials, such as V2C and Nb2C.
Asunto(s)
Peróxido de Hidrógeno , Titanio , Peróxido de Hidrógeno/química , Titanio/química , Dominio Catalítico , CatálisisRESUMEN
The widespread use of tetracycline (TC) in medicine and agriculture has caused severe pollution problems in the environment. In this work, a nanocomposite comprising of CoFe-layered double hydroxides grown on graphitic carbon nitride nanosheets (CoFe-LDH/g-C3N4) with a notable two-dimensional/two-dimensional (2D/2D) heterostructure was synthesized through a facile co-precipitation method. The CoFe-LDH/g-C3N4 nanocomposite displayed significantly improved visible-light-driven photocatalytic activity towards TC degradation, compared to pristine g-C3N4 and CoFe-LDH alone. The enhanced activation efficiency was a result of intimate interfacial contact, enlarged the surface area, broadened visible-light absorbance, and enhanced photogenerated electron transfer. The scavenging experiments showed that holes (h+) and superoxide radical anions (â§O2-) played a crucial role in TC degradation. Factors including the type of TCs, initial concentration of TC, presence of ions, and the type of water matrix were investigated to evaluate the practical feasibility of the nanocomposites for TC removal from antibiotics-contaminated water. The repeated tests showed that the nanocomposites possessed good stability and recyclability. This study demonstrated the feasibility of achieving photocatalytic activity enhancement of g-C3N4 through the formation of a 2D-2D heterostructure between LDHs and g-C3N4.
Asunto(s)
Nanocompuestos , Tetraciclina , Tetraciclina/química , Antibacterianos/química , Nanocompuestos/química , Agua , Hidróxidos/química , CatálisisRESUMEN
Ectodysplasin A (EDA), a ligand of the TNF family, plays an important role in maintaining the homeostasis of the ocular surface. EDA is necessary for the development of the meibomian gland, the lacrimal gland, as well as the proliferation and barrier function of the corneal epithelium. The mutation of EDA can induce the destruction of the ocular surface resulting in keratopathy, abnormality of the meibomian gland and maturation of the lacrimal gland. Experimental animal studies showed that a prenatal ultrasound-guided intra-amniotic injection or postnatal intravenous administration of soluble recombinant EDA protein can efficiently prevent the development of ocular surface abnormalities in EDA mutant animals. Furthermore, local application of EDA could restore the damaged ocular surface to some extent. Hence, a recombinant EDA-based therapy may serve as a novel paradigm to treat ocular surface disorders, such as meibomian gland dysfunction and corneal epithelium abnormalities.
Asunto(s)
Enfermedades de la Córnea , Epitelio Corneal , Aparato Lagrimal , Femenino , Animales , Embarazo , Ectodisplasinas/genética , Epitelio Corneal/metabolismo , Aparato Lagrimal/metabolismo , Enfermedades de la Córnea/metabolismo , HomeostasisRESUMEN
Tissue-engineered corneal epithelium transplantation is effective treatment for severe limbal stem cell deficiency (LSCD), while epithelial terminal differentiation, tans-differentiation, and insufficient stem cell during construction affect the quality of tissue-engineered corneal epithelium. In this study, we applied SB203580 in the culture medium to downregulate the p38 mitogen-activated protein kinase (MAPK) signaling pathway during construction of tissue-engineered corneal epithelium. With application of SB203580, tissue-engineered corneal epithelium showed enhanced strength and condensed structure. The expression of progenitor cell markers ATP-binding cassette sub-family G member 2, tumor protein p63, keratin 14, and Wnt family member 7A was increased, differentiation markers keratin 12, paired box 6, keratin 10, and keratin 13 and trans-differentiation markers actin alpha 2, smooth muscle and snail family transcriptional repressor 1 was decreased, while cell junction markers claudin 1 and cadherin 1 was increased in the tissue-engineered corneal epithelium. The Wnt/catenin beta 1 signaling pathway was upregulated in the epithelium after p38 MAPK inhibition. Transplantation of tissue-engineered corneal epithelium treated with SB203580 to rabbit LSCD model showed faster wound healing and improved epithelial quality. We conclude that downregulation of p38 MAPK signaling pathway helps maintain the stemness and prevent terminal differentiation and abnormal differentiation of corneal epithelial cells during epithelium construction process, and thus can improve the quality of tissue-engineered corneal epithelium. Impact statement Downregulation of p38 MAPK signaling pathway helps maintain the self-renewal of limbal stem cells and prevents terminal differentiation and abnormal differentiation of corneal epithelial cells. Small molecules modulating p38 MAPK signaling pathway ameliorate tissue-engineered corneal epithelium.
Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Animales , Conejos , Limbo de la Córnea/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/análisis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Regulación hacia Abajo , Transducción de SeñalRESUMEN
Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and â¼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.
Asunto(s)
Contaminantes Ambientales , Nanosferas , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos/toxicidad , Nanosferas/toxicidad , Plásticos/toxicidad , Invertebrados , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Organismos AcuáticosRESUMEN
Uptake kinetics and delivery mechanisms of nanoparticles (NPs) in crop plants need to be urgently understood for the application of nanotechnology in agriculture as delivery systems for eco-friendly nanoagrochemicals. Here, we investigated the uptake kinetics, translocation pathway, and key internalization process of graphene in wheat (Triticum aestivum L.) by applying three specific hydroponic cultivation methods (submerging, hanging, and split-root). Quantification results on the uptake of carbon-14 radiolabeled graphene in each tissue indicated that graphene could enter the root of wheat and further translocate to the shoot with a low delivery rate (<2%). Transmission electron microscopy (TEM) images showed that internalized graphene was transported to adjacent cells through the plasmodesmata, clearly indicating the symplastic pathway of graphene translocation. The key site for the introduction of graphene into root cells for translocation through the symplastic pathway is evidenced to be the apex of growing root hair, where the newly constructed primary cell wall is much thinner. The confirmation of uptake kinetics and delivery mechanisms is useful for the development of nanotechnology in sustainable agriculture, especially for graphene serving as the delivery vector for pesticides, genes, and sensors.
Asunto(s)
Grafito , Radioisótopos de Carbono/metabolismo , Grafito/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , TriticumRESUMEN
The global-scale production of plastics has been instrumental in advancing modern society, while the rising accumulation of plastics in landfills, oceans, and anything in between has become a major stressor on environmental sustainability, climate, and, potentially, human health. While mechanical and chemical forces of man and nature can eventually break down or recycle plastics, our understanding of the biological fingerprints of plastics, especially of nanoplastics, remains poor. Here we report on a phenomenon associated with the nanoplastic forms of anionic polystyrene and poly(methyl methacrylate), where their introduction disrupted the vascular endothelial cadherin junctions in a dose-dependent manner, as revealed by confocal fluorescence microscopy, signaling pathways, molecular dynamics simulations, as well as ex vivo and in vivo assays with animal model systems. Collectively, our results implicated nanoplastics-induced vasculature permeability as primarily biophysical-biochemical in nature, uncorrelated with cytotoxic events such as reactive oxygen species production, autophagy, and apoptosis. This uncovered route of paracellular transport has opened up vast avenues for investigating the behaviour and biological effects of nanoplastics, which may offer crucial insights for guiding innovations towards a sustainable plastics industry and environmental remediation.
Asunto(s)
Microplásticos , Poliestirenos , Animales , Humanos , Masculino , Plásticos , Polimetil Metacrilato , Poliestirenos/química , Especies Reactivas de OxígenoRESUMEN
The tetracycline (TC) in water has led to serious concern. Graphitic carbon nitride (g-C3N4) photocatalysts were produced via copolymerization of mono-benzene ring-mediated precursors (urea, melamine, and dicyandiamide) involving salicylic acid (SA) for TC degradation. The SA-modified g-C3N4 samples showed improved visible light absorbance, transfer and separation of photogenerated electrons, and prospective photocatalytic application in TC degradation. As a result, the optimal SA-modified g-C3N4 (2 wt% of SA) using urea (CNU-SA-2) showed 2 times higher TC degradation than that of pristine g-C3N4. The process of TC degradation was evaluated by the reduction of antibacterial activity and extensively studied by varying the types of TC, initial pH values, co-existing anions, and natural organic materials. In addition, the catalyst could be reused for at least four cycles, indicating good reusability. The main active species were revealed to be h+ and ·O2- by scavenging experiments and electron spin resonance. The CNU-SA-2 photocatalyst and TC intermediates during degradation had no adverse impact on zebrafish embryos. This work could provide a design strategy and a perspective on the practical application of g-C3N4-based photocatalysts for the treatment of wastewater containing antibiotics.