Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(31): 27703-27713, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35967029

RESUMEN

The synthesis of battery-type electrode materials with hollow nanostructures for high-performance hybrid supercapacitors (HSCs) remains challenging. In this study, hollow CuS@Ni-Co layered double hydroxide (CuS-LDH) composites with distinguished compositions and structures are successfully synthesized by co-precipitation and the subsequent etching/ion-exchange reaction. CuS-LDH-10 with uniformly dispersed CuS prepared with the addition of 10 mg of CuS shows a unique hollow polyhedral structure constituted by loose nanosphere units, and these nanospheres are composed of interlaced fine nanosheets. The composite prepared with 30 mg of CuS addition (CuS-LDH-30) is composed of a hollow cubic morphology with vertically aligned nanosheets on the CuS shell. The CuS-LDH-10 and CuS-LDH-30 electrodes exhibit high specific capacity (765.1 and 659.6 C g-1 at 1 A g-1, respectively) and superior cycling performance. Additionally, the fabricated HSC delivers a prominent energy density of 52.7 Wh kg-1 at 804.5 W kg-1 and superior cycling performance of 87.9% capacity retention after 5000 cycles. Such work offers a practical and effortless route for synthesizing unique metal sulfide/hydroxide composite electrode materials with hollow structures for high-performance HSCs.

2.
Magn Reson Chem ; 50(4): 289-94, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22392761

RESUMEN

A general strategy of structural analysis of alumina silicate by combining various solid-state NMR measurements such as single pulse, multi-quantum magic angle spinning, double-quantum homo-nuclear correlation under magic angle spinning (DQ-MAS), and cross-polarization hetero-nuclear correlation (CP-HETCOR) was evaluated with the aid of high magnetic field NMR (800 MHz for (1) H Larmor frequency) by using anorthite as a model material. The high magnetic field greatly enhanced resolution of (27) Al in single pulse, DQ-MAS, and even in triple-quantum magic angle spinning NMR spectra. The spatial proximities through dipolar couplings were probed by the DQ-MAS methods for homo-nuclear correlations between both (27) Al-(27) Al and (29) Si-(29) Si and by CP-HETCOR for hetero-nuclear correlations between (27) Al-(29) Si in the anorthite framework. By combining various NMR methodologies, we elucidated detailed spatial correlations among various aluminum and silicon species in anorthite that was hard to be determined using conventional analytical methods at low magnetic field. Moreover, the presented approach is applicable to analyze other alumina-silicate minerals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...