Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transplantation ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685196

RESUMEN

BACKGROUND: The number of donors from donation after circulatory determination of death (DCDD) has increased by at least 4-fold over the past decade. This study evaluated the association between the antecedent cardiac arrest status of controlled DCDD donors and the risk of delayed graft function (DGF). METHODS: Using data from the Australia and New Zealand Dialysis and Transplant, the associations between antecedent cardiac arrest status of DCDD donors before withdrawal of cardiorespiratory support, DGF, posttransplant estimated glomerular filtration rate (eGFR), and allograft loss were examined using adjusted logistic, linear mixed modeling, and cox regression, respectively. Among donors who experienced cardiac arrest, we evaluated the association between duration and unwitnessed status of arrest and DGF. RESULTS: A total of 1173 kidney transplant recipients received DCDD kidneys from 646 donors in Australia between 2014 and 2019. Of these, 335 DCDD had antecedent cardiac arrest. Compared with recipients of kidneys from donors without antecedent cardiac arrest, the adjusted odds ratio (95% confidence interval) for DGF was 0.85 (0.65-1.11) among those with kidneys from donors with cardiac arrest. There was no association between antecedent cardiac arrest and posttransplant eGFR or allograft loss. The duration of cardiac arrest and unwitnessed status were not associated with DGF. CONCLUSIONS: This focused analysis in an Australian population showed that the allograft outcomes were similar whether DCDD donors had experienced a prior cardiac arrest, with no associations between duration or unwitnessed status of arrest and risk of DGF. This study thus provides important reassurance to transplant programs and the patients they counsel, to accept kidneys from donors through the DCDD pathway irrespective of a prior cardiac arrest.

2.
Front Cardiovasc Med ; 11: 1336269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476379

RESUMEN

Background: The occurrence of acute kidney injury (AKI) following cardiac surgery is common and linked to unfavorable consequences while identifying it in its early stages remains a challenge. The aim of this research was to examine whether the fibrinogen-to-albumin ratio (FAR), an innovative inflammation-related risk indicator, has the ability to predict the development of AKI in individuals after cardiac surgery. Methods: Patients who underwent cardiac surgery from February 2023 to March 2023 and were admitted to the Cardiac Surgery Intensive Care Unit of a tertiary teaching hospital were included in this prospective observational study. AKI was defined according to the KDIGO criteria. To assess the diagnostic value of the FAR in predicting AKI, calculations were performed for the area under the receiver operating characteristic curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results: Of the 260 enrolled patients, 85 developed AKI with an incidence of 32.7%. Based on the multivariate logistic analyses, FAR at admission [odds ratio (OR), 1.197; 95% confidence interval (CI), 1.064-1.347, p = 0.003] was an independent risk factor for AKI. The receiver operating characteristic (ROC) curve indicated that FAR on admission was a significant predictor of AKI [AUC, 0.685, 95% CI: 0.616-0.754]. Although the AUC-ROC of the prediction model was not substantially improved by adding FAR, continuous NRI and IDI were significantly improved. Conclusions: FAR is independently associated with the occurrence of AKI after cardiac surgery and can significantly improve AKI prediction over the clinical prediction model.

3.
Heliyon ; 10(3): e24538, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38314303

RESUMEN

Leptospirosis is a zoonosis that is related to potential respiratory, renal, neurological, and cardiovascular failure. At present, antibiotics are the recommended treatment, but due to the underlying cause of the disease, they may induce the Jarisch-Herxheimer reaction (JHR) within 24 hours. At the same time, we speculate that JHR may aggravate the natural course of leptospirosis. Considering that there are few available reports on this event, we will share a case of pulmonary hemorrhagic leptospirosis, where antibiotic treatment is suspected to have triggered the JHR. This report is expected to improve clinical attention to the relationship between leptospirosis and JHR.

4.
Nat Commun ; 15(1): 509, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218939

RESUMEN

Recent advances in subcellular imaging transcriptomics platforms have enabled high-resolution spatial mapping of gene expression, while also introducing significant analytical challenges in accurately identifying cells and assigning transcripts. Existing methods grapple with cell segmentation, frequently leading to fragmented cells or oversized cells that capture contaminated expression. To this end, we present BIDCell, a self-supervised deep learning-based framework with biologically-informed loss functions that learn relationships between spatially resolved gene expression and cell morphology. BIDCell incorporates cell-type data, including single-cell transcriptomics data from public repositories, with cell morphology information. Using a comprehensive evaluation framework consisting of metrics in five complementary categories for cell segmentation performance, we demonstrate that BIDCell outperforms other state-of-the-art methods according to many metrics across a variety of tissue types and technology platforms. Our findings underscore the potential of BIDCell to significantly enhance single-cell spatial expression analyses, enabling great potential in biological discovery.


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Eritrocitos Anormales , Prueba de Histocompatibilidad , Aprendizaje Automático Supervisado
5.
Genome Res ; 34(1): 119-133, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38190633

RESUMEN

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space by using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal data sets, we show scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome data set we generated from differentiating mouse embryonic stem cells over time, we show scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Regulación de la Expresión Génica
6.
iScience ; 26(11): 108220, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965156

RESUMEN

The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.

7.
NPJ Syst Biol Appl ; 9(1): 51, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857632

RESUMEN

Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for further advancements in this rapidly developing field.


Asunto(s)
Redes Reguladoras de Genes , Multiómica , Redes Reguladoras de Genes/genética
8.
Sci Rep ; 13(1): 16367, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773250

RESUMEN

Organ shortage is a major barrier in transplantation and rules guarding organ allocation decisions should be robust, transparent, ethical and fair. Whilst numerous allocation strategies have been proposed, it is often unrealistic to evaluate all of them in real-life settings. Hence, the capability of conducting simulations prior to deployment is important. Here, we developed a kidney allocation simulation framework (simKAP) that aims to evaluate the allocation process and the complex clinical decision-making process of organ acceptance in kidney transplantation. Our findings have shown that incorporation of both the clinical decision-making and a dynamic wait-listing process resulted in the best agreement between the actual and simulated data in almost all scenarios. Additionally, several hypothetical risk-based allocation strategies were generated, and we found that these strategies improved recipients' long-term post-transplant patient survival and reduced wait time for transplantation. The importance of simKAP lies in its ability for policymakers in any transplant community to evaluate any proposed allocation algorithm using in-silico simulation.


Asunto(s)
Trasplante de Riñón , Obtención de Tejidos y Órganos , Trasplantes , Humanos , Riñón , Toma de Decisiones , Donantes de Tejidos , Asignación de Recursos
9.
Clin Kidney J ; 16(7): 1170-1179, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37398694

RESUMEN

Background: Kidneys donated after circulatory death suffer a period of functional warm ischaemia before death, which may lead to early ischaemic injury. Effects of haemodynamic trajectories during the agonal phase on delayed graft function (DGF) is unknown. We aimed to predict the risk of DGF using patterns of trajectories of systolic blood pressure (SBP) declines in Maastricht category 3 kidney donors. Methods: We conducted a cohort study of all kidney transplant recipients in Australia who received kidneys from donation after circulatory death donors, divided into a derivation cohort (transplants between 9 April 2014 and 2 January 2018 [462 donors]) and a validation cohort (transplants between 6 January 2018 and 24 December 2019 [324 donors]). Patterns of SBP decline using latent class models were evaluated against the odds of DGF using a two-stage linear mixed effects model. Results: In the derivation cohort, 462 donors were included in the latent class analyses and 379 donors in the mixed effects model. Of the 696 eligible transplant recipients, 380 (54.6%) experienced DGF. Ten different trajectories, with distinct patterns of SBP decline were identified. Compared with recipients from donors with the slowest decline in SBP after withdrawal of cardiorespiratory support, the adjusted odds ratio (aOR) for DGF was 5.5 [95% confidence interval (CI) 1.38-28.0] for recipients from donors with a steeper decline and lowest SBP [mean 49.5 mmHg (standard deviation 12.5)] at the time of withdrawal. For every 1 mmHg/min reduction in the rate of decline of SBP, the respective aORs for DGF were 0.95 (95% CI 0.91-0.99) and 0.98 (95% CI 0.93-1.0) in the random forest and least absolute shrinkage and selection operator models. In the validation cohort, the respective aORs were 0.95 (95% CI 0.91-1.0) and 0.99 (95% CI 0.94-1.0). Conclusion: Trajectories of SBP decline and their determinants are predictive of DGF. These results support a trajectory-based assessment of haemodynamic changes in donors after circulatory death during the agonal phase for donor suitability and post-transplant outcomes.

10.
Nat Commun ; 14(1): 4272, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460600

RESUMEN

The recent emergence of multi-sample multi-condition single-cell multi-cohort studies allows researchers to investigate different cell states. The effective integration of multiple large-cohort studies promises biological insights into cells under different conditions that individual studies cannot provide. Here, we present scMerge2, a scalable algorithm that allows data integration of atlas-scale multi-sample multi-condition single-cell studies. We have generalized scMerge2 to enable the merging of millions of cells from single-cell studies generated by various single-cell technologies. Using a large COVID-19 data collection with over five million cells from 1000+ individuals, we demonstrate that scMerge2 enables multi-sample multi-condition scRNA-seq data integration from multiple cohorts and reveals signatures derived from cell-type expression that are more accurate in discriminating disease progression. Further, we demonstrate that scMerge2 can remove dataset variability in CyTOF, imaging mass cytometry and CITE-seq experiments, demonstrating its applicability to a broad spectrum of single-cell profiling technologies.


Asunto(s)
COVID-19 , Perfilación de la Expresión Génica , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Secuenciación del Exoma , Análisis de Secuencia de ARN/métodos
11.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292801

RESUMEN

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.

12.
J Am Chem Soc ; 145(16): 8822-8832, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37057992

RESUMEN

Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our ∼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/metabolismo , Aciltransferasas/química , Dominio Catalítico , Policétidos/metabolismo , Especificidad por Sustrato
13.
Jpn J Clin Oncol ; 53(1): 35-45, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36156086

RESUMEN

BACKGROUND: Lymphovascular invasion, including lymphatic-vessel invasion and blood-vessel invasion, plays an important role in distant metastases. The metastatic pattern of blood-vessel invasion may differ from that of lymphatic-vessel invasion. However, its prognostic significance in breast cancer remains controversial. We evaluated the role of blood-vessel invasion in the prognosis of operable breast-cancer patients and its association with clinicopathological characteristics. METHODS: We systematically searched EMBASE, PubMed, the Cochrane Library and Web of Science for studies in English through December 2020. Disease-free survival, overall survival and cancer-specific survival were the primary outcomes. Pooled hazard ratios and 95% confidence intervals were assessed using a random-effects model. RESULTS: Twenty-seven studies involving 7954 patients were included. Blood-vessel invasion occurred in 20.4% of tumor samples. Pooled results showed significant associations of blood-vessel invasion with worse disease-free survival (hazard ratio = 1.82; 95% confidence interval = 1.43-2.31) and overall survival (hazard ratio = 1.86; 95% confidence interval = 1.16-2.99) in multivariate analyses. The results of the univariate analyses were similar. Among the clinicopathological factors, blood-vessel invasion was associated with larger tumor size, lymph-node metastasis, nonspecific invasive type, higher histological grade, estrogen receptor-negative breast cancer, human epidermal growth factor receptor 2-positive breast cancer and lymphatic-vessel invasion. In the lymph-node-negative subgroup analyses, the presence of blood-vessel invasion led to poorer disease-free survival (hazard ratio = 2.46; 95%confidence interval = 1.64-3.70) and overall survival (hazard ratio = 2.94; 95%confidence interval = 1.80-4.80). CONCLUSIONS: We concluded that blood-vessel invasion is an independent predictor of poor prognosis in operable breast cancer and is associated with aggressive clinicopathological features. Breast-cancer patients with blood-vessel invasion require more aggressive treatments after surgery.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Invasividad Neoplásica/patología , Mama/patología , Pronóstico , Supervivencia sin Enfermedad
14.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168446

RESUMEN

The organ-intrinsic nervous system is a major interface between visceral organs and the brain, mediating important sensory and regulatory functions in the body-brain axis and serving as critical local processors for organ homeostasis. Molecularly, anatomically, and functionally, organ-intrinsic neurons are highly specialized for their host organs. However, the underlying mechanism that drives this specialization is largely unknown. Here, we describe the differential strategies utilized to achieve organ-specific organization between the enteric nervous system (ENS) 1 and the intrinsic cardiac nervous system (ICNS) 2 , a neuronal network essential for heart performance but poorly characterized. Integrating high-resolution whole-embryo imaging, single-cell genomics, spatial transcriptomics, proteomics, and bioinformatics, we uncover that unlike the ENS which is highly mobile and colonizes the entire gastrointestinal (GI) tract, the ICNS uses a rich set of extracellular matrix (ECM) genes that match with surrounding heart cells and an intermediate dedicated neuronal progenitor state to stabilize itself for a 'beads-on-the-necklace' organization on heart atria. While ICNS- and ENS-precursors are genetically similar, their differentiation paths are influenced by their host-organs, leading to distinct mature neuron types. Co-culturing ENS-precursors with heart cells shifts their identity towards the ICNS and induces the expression of heart-matching ECM genes. Our cross-organ study thus reveals fundamental principles for the maturation and specialization of organ-intrinsic neurons.

15.
F1000Res ; 12: 261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38434622

RESUMEN

Background: Globally, scientists now have the ability to generate a vast amount of high throughput biomedical data that carry critical information for important clinical and public health applications. This data revolution in biology is now creating a plethora of new single-cell datasets. Concurrently, there have been significant methodological advances in single-cell research. Integrating these two resources, creating tailor-made, efficient, and purpose-specific data analysis approaches can assist in accelerating scientific discovery. Methods: We developed a series of living workshops for building data stories, using Single-cell data integrative analysis (scdney). scdney is a wrapper package with a collection of single-cell analysis R packages incorporating data integration, cell type annotation, higher order testing and more. Results: Here, we illustrate two specific workshops. The first workshop examines how to characterise the identity and/or state of cells and the relationship between them, known as phenotyping. The second workshop focuses on extracting higher-order features from cells to predict disease progression. Conclusions: Through these workshops, we not only showcase current solutions, but also highlight critical thinking points. In particular, we highlight the Thinking Process Template that provides a structured framework for the decision-making process behind such single-cell analyses. Furthermore, our workshop will incorporate dynamic contributions from the community in a collaborative learning approach, thus the term 'living'.

16.
BMC Infect Dis ; 22(1): 914, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476209

RESUMEN

BACKGROUND: Both disseminated intravascular coagulation and thrombotic microangiopathy are complications of sepsis as Salmonella septicemia, respectively. They are related and have similar clinical characteristics as thrombopenia and organ dysfunctions. They rarely co-occur in some specific cases, which requires a clear distinction. CASE PRESENTATION: A 22-year-old woman had just undergone intracranial surgery and suffered from Salmonella derby septicemia with multiorgan involvement in the hospital. Laboratory workup demonstrated coagulation disorder, hemolytic anemia, thrombocytopenia, and acute kidney injury, leading to the co-occurrence of disseminated intravascular coagulation and secondary thrombotic microangiopathy. She received antibiotics, plasma exchange therapy, dialysis, mechanical ventilation, fluids, and vasopressors and gained full recovery without complications. CONCLUSION: Disseminated intravascular coagulation and secondary thrombotic microangiopathy can co-occur in Salmonella derby septicemia. They should be treated cautiously in diagnosis and differential diagnosis. Thrombotic microangiopathy should not be missed just because of the diagnosis of disseminated intravascular coagulation. Proper and timely identification of thrombotic microangiopathy with a diagnostic algorithm is essential for appropriate treatment and better outcomes.


Asunto(s)
Coagulación Intravascular Diseminada , Humanos , Adulto Joven , Adulto , Coagulación Intravascular Diseminada/complicaciones , Coagulación Intravascular Diseminada/diagnóstico , Salmonella
17.
Molecules ; 27(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500516

RESUMEN

Three homologous electrochromic conjugated polymers, each containing an asymmetric building block but decorated with distinct alkyl chains, were designed and synthesized using electrochemical polymerization in this study. The corresponding monomers, namely T610FBTT810, DT6FBT, and DT48FBT, comprise the same backbone structure, i.e., an asymmetric 5-fluorobenzo[c][1,2,5]thiadiazole unit substituted by two thiophene terminals, but were decorated with different types of alkyl chain (hexyl, 2-butyloctyl, 2-hexyldecyl, or 2-octyldecyl). The effects of the side-chain structure and asymmetric repeating unit on the optical absorption, electrochemistry, morphology, and electrochromic properties were investigated comparatively. It was found that the electrochromism conjugated polymer, originating from DT6FBT with the shortest and linear alkyl chain, exhibits the best electrochromic performance with a 25% optical contrast ratio and a 0.3 s response time. The flexible electrochromic device of PDT6FBT achieved reversible colors of navy and cyan between the neutral and oxidized states, consistent with the non-device phenomenon. These results demonstrate that subtle modification of the side chain is able to change the electrochromic properties of conjugated polymers.


Asunto(s)
Polímeros , Tiofenos , Polímeros/química , Polimerizacion , Tiofenos/química , Electroquímica/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-36554383

RESUMEN

Although many studies have suggested that nature-based activities have a healing effect on human beings, there is little research on the underlying mechanism. This study investigated the role of nature connectedness in the relationship between the perception of nature and individuals' physical and psychological health. We recruited essential workers who participated in disease prevention and control during the COVID-19 pandemic and their family members as the subjects for this study. The stress levels experienced by this group made them an ideal sample. The results of a survey-based study showed that nature-based activities had a positive effect on alleviating state anxiety levels. The results also showed that nature-based activities affected perceived restoration via the feeling of nature connectedness. This study examined the healing effect of nature-based activities that stimulate the five senses and nature connectedness and explored the potential of nature-based treatments for people experiencing high levels of stress.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Emociones , Familia , Salud Mental
19.
PLoS Comput Biol ; 18(10): e1010495, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36197936

RESUMEN

COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected cells within the lung, and of protective or dysfunctional immune responses to the virus, is critical to effectively treat these patients. Currently, our understanding of cell-cell interactions across different disease states, and how such interactions may drive pathogenic outcomes, is incomplete. Here, we developed a generalizable and scalable workflow for identifying cells that are differentially interacting across COVID-19 patients with distinct disease outcomes and use this to examine eight public single-cell RNA-seq datasets (six from peripheral blood mononuclear cells, one from bronchoalveolar lavage and one from nasopharyngeal), with a total of 211 individual samples. By characterizing the cell-cell interaction patterns across epithelial and immune cells in lung tissues for patients with varying disease severity, we illustrate diverse communication patterns across individuals, and discover heterogeneous communication patterns among moderate and severe patients. We further illustrate patterns derived from cell-cell interactions are potential signatures for discriminating between moderate and severe patients. Overall, this workflow can be generalized and scaled to combine multiple scRNA-seq datasets to uncover cell-cell interactions.


Asunto(s)
COVID-19 , Comunicación Celular , Humanos , Leucocitos Mononucleares , SARS-CoV-2 , Flujo de Trabajo
20.
Transplant Direct ; 8(9): e1357, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35935023

RESUMEN

Recurrent membranous nephropathy (MN) posttransplantation affects 35% to 50% of kidney transplant recipients (KTRs) and accounts for 50% allograft loss 5 y after diagnosis. Predictive factors for recurrent MN may include HLA-D risk alleles, but other factors have not been explored with certainty. Methods: The Australian and New Zealand Dialysis and Transplant registry was used to develop 3 prediction models for recurrent MN (Group Least Absolute Shrinkage and Selection Operator [LASSO], penalized Cox regression, and random forest), which were tuned using tenfold cross-validation in a derivation cohort with complete HLA data. KTRs with MN but incomplete HLA data formed the validation cohort. Model performance was evaluated using area under the receiver operating characteristic curve (AUC-ROC). Results: One hundred ninety-nine KTRs with MN were included, and 25 (13%) had recurrent MN (median follow-up 5.9 y). The AUC-ROCs for Group LASSO, penalized Cox regression, and random forest models were 0.85 (95% confidence interval, 0.76-0.94), 0.91 (0.85-0.96), and 0.62 (0.57-0.69), respectively, in the derivation cohort, with moderate agreement in selected variables between the models (55%-70%). In their validation cohorts, the AUC-ROCs for Group LASSO and penalized Cox regression were 0.60 (0.49-0.70) and 0.73 (0.59-0.86), respectively. Variables of importance chosen by all models included recipient HLA-A2, donor HLA-DR12, donor-recipient HLA-B65, and HLA-DR12 match. Conclusions: A penalized Cox regression performed reasonably for predicting recurrent MN and was superior to Group LASSO and random forest models. These models highlighted the importance of donor-recipient HLA characteristics to recurrent MN, although validation in larger datasets is required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...