Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 361: 124892, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241949

RESUMEN

Lead ions (Pb2+) are heavy metal environmental pollutants that can significantly impact biological health. In this study, the synthesis of a ternary nanocomposite, ErVO4/P@g-C3N4/SnS2, was achieved using a combination of hydrothermal synthesis and mechanical grinding. The as-fabricated photoelectrochemical (PEC) sensor was found to be an ideal substrate for Pb2+ detection with high sensitivity and reliability. The ErVO4/P@g-C3N4/SnS2/FTO was selected as the substrate because of its remarkable and reliable photocurrent response. The Pb2+ sensor exhibited a low detection limit of 0.1 pM and a broad linear range of 0.002-0.2 nM. Moreover, the sensor exhibited outstanding stability, selectivity, and reproducibility. In real-time applications, it exhibited stable recovery and a low relative standard deviation, ensuring reliable and accurate measurements. The as-prepared PEC sensor was highly stable for the detection of Pb2+ in different water samples. This promising characteristic highlights its significant potential for use in the detection of environmental pollutants.

2.
Chemosphere ; 365: 143336, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277039

RESUMEN

Photoelectrochemical (PEC) detection technology is key for fighting pollution, leveraging the photoelectric conversion of the photoelectrode material. A specialized photoelectrode was developed to detect Hg2+ ions with exceptional sensitivity, utilizing an anodic PEC sensor composed of Er3NbO7/P@g-C3N4/SnS2 ternary nanocomposite. Rare earth metal niobates (RENs) were chosen due to their underexplored potential, whose performance was enhanced through bandgap engineering and surface modification, facilitated by P@g-C3N4 as an immobilization matrix and SnS2, belonging to the I-IV semiconductors category fostering hybrid heterojunction formation for boasting optical properties and suitable redox potentials. Introducing Hg2+ into the system, a specific amalgamation reaction occurs between reduced Hg and Sn. This reaction obstructs electron transfer to the FTO electrode surface, leading to the recombination of charges. The proposed PEC sensor exhibited remarkable analytical performance for Hg2+ detection, high sensitivity, a detection limit of 0.019 pM, excellent selectivity, and a detectable concentration range of 0.002-0.15 nM. Additionally, it demonstrated good recovery and low relative standard deviation when analyzing Hg2+ in water samples, highlighting the potential application of the heterostructure in detecting heavy metal ions via PEC technology.

3.
Chemosphere ; 364: 143188, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187027

RESUMEN

Water contamination is a serious environmental issue posing a significant global challenge. Roxarsone (ROX), a widely used anticoccidial drug is excreted in urine and feces, potentially disrupting natural habitats. Therefore, rapid and cost-effective ROX detection is essential. In this study, we developed a 2D sheet structure of zinc molybdate decorated on MXene (ZnMoO4/MXene) for detecting ROX using electrochemical methods. The materials were characterized using appropriate spectrophotometric and voltammetric techniques. The ZnMoO4/MXene hybrid exhibited excellent electrocatalytic performance due to its rapid electron transfer rate and higher electrical conductivity. The ZnMoO4/MXene-modified GCE (ZnMoO4/MXene/GCE) showed a broad linear range with high sensitivity (10.413 µA µÐœ-1 cm-2) and appreciable limit of detection (LOD) as low as 0.0081 µM. It also demonstrated significant anti-interference capabilities, excellent storage stability, and remarkable reproducibility. Furthermore, the feasibility of utilizing ZnMoO4/MXene/GCE for monitoring ROX in water samples was confirmed, achieving satisfactory recoveries.

4.
J Mater Chem B ; 12(35): 8733-8745, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39138950

RESUMEN

Graphene oxide (GO) is a two-dimensional metastable nanomaterial. Interestingly, GO formed oxygen clusterings in addition to oxidized and graphitic phases during the low-temperature thermal annealing process, which could be further used for biomolecule bonding. By harnessing this property of GO, we created a bio-interface with patterned structures with a common laboratory hot plate that could tune cellular behavior by physical contact. Due to the regional distribution of oxygen clustering at the interface, we refer to it as patterned annealed graphene oxide (paGO). In addition, since the paGO was a heterogeneous interface and bonded biomolecules to varying degrees, arginine-glycine-aspartic acid (RGD) was modified on it and successfully regulated cellular-directed growth and migration. Finally, we investigated the FRET phenomenon of this heterogeneous interface and found that it has potential as a biosensor. The paGO interface has the advantages of easy regulation and fabrication, and the one-step thermal reduction method is suitable for biological applications. We believe that this low-temperature thermal annealing method would make GO interfaces more accessible, especially for the development of nano-interfacial modifications for biological applications, revealing its potential for biomedical applications.


Asunto(s)
Movimiento Celular , Grafito , Grafito/química , Movimiento Celular/efectos de los fármacos , Humanos , Oligopéptidos/química , Temperatura , Propiedades de Superficie , Animales , Tamaño de la Partícula
5.
J Mater Chem B ; 12(32): 7814-7825, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38895823

RESUMEN

In recent decades, orthopedic implants have been widely used as materials to replace human bone tissue functions. Among these, metal implants play a crucial role. Metals with better chemical stability, such as stainless steel, titanium alloys, and cobalt-chromium-molybdenum (CoCrMo) alloy, are commonly used for long-term applications. However, good chemical stability can result in poor tissue integration between the tissue and the implant, leading to potential inflammation risks. This study creates hydrogenated CoCrMo (H-CoCrMo) surfaces, which have shown promise as anti-inflammatory orthopedic implants. Using the electrochemical cathodic hydrogen-charging method, the surface of the CoCrMo alloy was hydrogenated, resulting in improved biocompatibility, reduced free radicals, and an anti-inflammatory response. Hydrogen diffusion to a depth of approximately 106 ± 27 nm on the surface facilitated these effects. This hydrogen-rich surface demonstrated a reduction of 85.2% in free radicals, enhanced hydrophilicity as evidenced by a decrease in a contact angle from 83.5 ± 1.9° to 52.4 ± 2.2°, and an increase of 11.4% in hydroxyapatite deposition surface coverage. The cell study results revealed a suppression of osteosarcoma cell activity to 50.8 ± 2.9%. Finally, the in vivo test suggested the promotion of new bone formation and a reduced inflammatory response. These findings suggest that electrochemical hydrogen charging can effectively modify CoCrMo surfaces, offering a potential solution for improving orthopedic implant outcomes through anti-inflammatory mechanisms.


Asunto(s)
Materiales Biocompatibles , Hidrógeno , Inflamación , Vitalio , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Humanos , Hidrógeno/química , Vitalio/química , Vitalio/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Propiedades de Superficie , Prótesis e Implantes , Animales , Aleaciones/química , Aleaciones/farmacología , Cobalto/química , Ensayo de Materiales , Ratones , Tamaño de la Partícula
6.
ACS Appl Mater Interfaces ; 16(20): 25622-25636, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739745

RESUMEN

Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Metotrexato , Ratones Desnudos , Nanotubos , Metotrexato/química , Metotrexato/farmacología , Animales , Nanotubos/química , Ratones , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Ratones Endogámicos BALB C , Terapia Fototérmica , Hierro/química , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Compuestos de Selenio/efectos de la radiación , Línea Celular Tumoral , Rayos Infrarrojos
7.
Chemosphere ; 358: 142237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705406

RESUMEN

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Asunto(s)
Carbono , Ciprofloxacina , Miel , Leche , Nanocompuestos , Nanofibras , Óxidos , Nanocompuestos/química , Ciprofloxacina/análisis , Ciprofloxacina/química , Óxidos/química , Leche/química , Nanofibras/química , Animales , Miel/análisis , Carbono/química , Molibdeno/química , Límite de Detección , Compuestos de Calcio/química , Titanio/química , Teoría Funcional de la Densidad , Técnicas Electroquímicas/métodos , Cerio/química , Contaminación de Alimentos/análisis , Electrodos , Magnesio/química , Magnesio/análisis
8.
Environ Pollut ; 356: 124196, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788992

RESUMEN

This study involved the synthesis of a Ce2Sn2O7/Ag3PO4/V@g-C3N4 composite through hydrothermal methods, followed by mechanical grinding. The resulting heterojunction exhibited improved catalytic activity under visible light by effectively separating electrons and holes (e-/h+). The degradation of Tartrazine (TTZ) reached 93.20% within 50 min by employing a ternary composite at a concentration of 10 mg L-1, along with 6 mg L-1 of PS. The highest pseudo-first-order kinetic constant (0.1273 min-1 and R2 = 0.951) was observed in this system. The dual Z-scheme heterojunction is developed by Ce2Sn2O7, Ag3PO4, and V@g-C3N4, and it may increase the visible light absorption range while also accelerating charge carrier transfer and separation between catalysts. The analysis of the vulnerability positions and degradation pathways of TTZ involved the utilization of density functional theory (DFT) and gas chromatography-mass spectrometry (GC-MS) to examine the intermediate products. Therefore, Ce2Sn2O7/Ag3PO4/V@g-C3N4 is an excellent ternary nanocomposite for the remediation of pollutants.


Asunto(s)
Compuestos de Plata , Tartrazina , Cinética , Catálisis , Compuestos de Plata/química , Tartrazina/química , Sulfatos/química , Aditivos Alimentarios/química , Teoría Funcional de la Densidad , Cerio/química , Compuestos de Nitrógeno/química , Grafito , Fosfatos
9.
J Mater Chem B ; 12(16): 3881-3907, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572601

RESUMEN

Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.


Asunto(s)
Rayos Infrarrojos , Nanopartículas , Neoplasias , Agua , Humanos , Nanopartículas/química , Catálisis , Agua/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Animales , Procesos Fotoquímicos
10.
J Mater Chem B ; 12(15): 3569-3593, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494982

RESUMEN

In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Hipertermia Inducida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
11.
Chemosphere ; 355: 141744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522669

RESUMEN

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Asunto(s)
Bencimidazoles , Bismuto , Carbamatos , Carbono , Nanofibras , Compuestos de Selenio , Carbono/química , Nanofibras/química , Ecosistema , Agua , Técnicas Electroquímicas/métodos , Electrodos
12.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337256

RESUMEN

Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.

13.
Biomater Adv ; 158: 213778, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325029

RESUMEN

Combining chemodynamic therapy (CDT) with photothermal therapy (PTT) has developed as a promising approach for cancer treatment, as it enhances therapeutic efficiency through redox reactions and external laser induction. In this study, we designed metal organic framework (MOF) -derived Cu5Zn8/HPCNC through a carbonization process and decorated them with gold nanoparticles (Au@Cu5Zn8/HPCNC). The resulting nanoparticles were employed as a photothermal agent and Fenton catalyst. The Fenton reaction facilitated the conversation of Cu2+ to Cu+ through reaction with local H2O2, generating reactive hydroxyl radicals (·OH) with potent cytotoxic effects. To enhance the Fenton-like reaction and achieve combined therapy, laser irradiation of the Au@Cu5Zn8/HPCNC induced efficient photothermal therapy by generating localized heat. With a significantly increased absorption of Au@Cu5Zn8/HPCNC at 808 nm, the photothermal efficiency was determined to be 57.45 %. Additionally, Au@Cu5Zn8/HPCNC demonstrated potential as a contrast agent for magnetic resonance imaging (MRI) of cancers. Furthermore, the synergistic combination of PTT and CDT significantly inhibited tumor growth. This integrated approach of PTT and CDT holds great promise for cancer therapy, offering enhanced CDT and modulation of the tumor microenvironment (TME), and opening new avenues in the fight against cancer.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Oro , Nanopartículas del Metal/uso terapéutico , Terapia Fototérmica , Porosidad , Microambiente Tumoral , Carbono , Imagen por Resonancia Magnética , Zinc
14.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339702

RESUMEN

In this study, a novel electrochemical sensor was created by fabricating a screen-printed carbon electrode with diamond nanoparticles (DNPs/SPCE). The successful development of the sensor enabled the specific detection of the anti-cancer drug flutamide (FLT). The DNPs/SPCE demonstrated excellent conductivity, remarkable electrocatalytic activity, and swift electron transfer, all of which contribute to the advantageous monitoring of FLT. These qualities are critical for monitoring FLT levels in environmental samples. Various structural and morphological characterization techniques were employed to validate the formation of the DNPs. Remarkably, the electrochemical sensor demonstrated a wide linear response range (0.025 to 606.65 µM). Additionally, it showed a low limit of detection (0.023 µM) and high sensitivity (0.403 µA µM-1 cm-2). Furthermore, the practicability of DNPs/SPCE can be successfully employed in FLT monitoring in water bodies (pond water and river water samples) with satisfactory recoveries.


Asunto(s)
Antineoplásicos , Nanopartículas , Flutamida/química , Nanopartículas/química , Carbono/química , Agua , Técnicas Electroquímicas/métodos , Electrodos
15.
Colloids Surf B Biointerfaces ; 234: 113755, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241894

RESUMEN

In terms of cancer-related deaths among women, breast cancer (BC) is the most common. Clinically, human epidermal growth receptor 2 (HER2) is one of the most commonly used diagnostic biomarkers for facilitating BC cell proliferation and malignant growth. In this study, a disposable gold electrode (DGE) modified with gold nanoparticle-decorated Ti3C2Tx (Au/MXene) was utilized as a sensing platform to immobilize the capturing antibody (Ab1/Au/MXene). Subsequently, nitrogen-doped graphene (NG) with a metal-organic framework (MOF)-derived copper-manganese-cobalt oxide, tagged as NG/CuMnCoOx, was used as a probe to label the detection antibody (Ab2). A sandwich-type immunosensor (NG/CuMnCoOx/Ab2/HER2-ECD /Ab1/Au/MXene/DGE) was developed to quantify HER2-ECD. NG/CuMnCoOx enhances the conductivity, electrocatalytic active sites, and surface area to immobilize Ab2. In addition, Au/MXene facilitates electron transport and captures more Ab1 on its surface. Under optimal conditions, the resultant immunosensor displayed an excellent linear range of 0.0001 to 50.0 ng. mL-1. The detection limit was 0.757 pg·mL-1 with excellent selectivity, appreciable reproducibility, and high stability. Moreover, the applicability for determining HER2-ECD in human serum samples indicates its ability to monitor tumor markers clinically.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Grafito , Compuestos de Manganeso , Nanopartículas del Metal , Estructuras Metalorgánicas , Nitritos , Óxidos , Elementos de Transición , Humanos , Femenino , Biomarcadores de Tumor , Grafito/química , Estructuras Metalorgánicas/química , Oro/química , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Neoplasias de la Mama/diagnóstico , Inmunoensayo , Técnicas Electroquímicas , Límite de Detección , Anticuerpos Inmovilizados/química
16.
Int J Biol Macromol ; 258(Pt 2): 128845, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141693

RESUMEN

Gelatin, widely employed in hydrogel dressings, faces limitations when used in high fluid environments, hindering effective material adhesion to wound sites and subsequently reducing treatment efficacy. The rapid degradation of conventional hydrogels often results in breakdown before complete wound healing. Thus, there is a pressing need for the development of durable adhesive wound dressings. In this study, 3-glycidoxypropyltrimethoxysilane (GPTMS) was utilized as a coupling agent to create gelatin-silica hybrid (G-H) dressings through the sol-gel method. The coupling reaction established covalent bonds between gelatin and silica networks, enhancing structural stability. Dopamine (DP) was introduced to this hybrid (G-H-D) dressing to further boost adhesiveness. The efficacy of the dressings for wound management was assessed through in-vitro and in-vivo tests, along with ex-vivo bioadhesion testing on pig skin. Tensile bioadhesion tests demonstrated that the G-H-D material exhibited approximately 2.5 times greater adhesion to soft tissue in wet conditions compared to pure gelatin. Moreover, in-vitro and in-vivo wound healing experiments revealed a significant increase in wound healing rates. Consequently, this material shows promise as a viable option for use as a moist wound dressing.


Asunto(s)
Dopamina , Gelatina , Animales , Porcinos , Gelatina/química , Dióxido de Silicio , Cicatrización de Heridas , Vendajes , Adherencias Tisulares , Hidrogeles/química , Antibacterianos
17.
Biomater Adv ; 157: 213724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134729

RESUMEN

Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.


Asunto(s)
Hipertermia Inducida , Nanoestructuras , Fototerapia , Microambiente Tumoral , Fenómenos Magnéticos
18.
ACS Appl Mater Interfaces ; 15(28): 33335-33347, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37403930

RESUMEN

This study prepared dumbbell-shaped titanium dioxide (TiO2)/gold nanorods (AuNRs) coated with mesoporous silica shells (mS) (AuNRs-TiO2@mS). Methotrexate (MTX) was further loaded into the AuNRs-TiO2@mS, and then upconversion nanoparticles (UCNPs) were decorated to form AuNRs-TiO2@mS-MTX: UCNP nanocomposites. TiO2 is used as an intense photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS), leading to photodynamic therapy (PDT). Concurrently, AuNRs exhibited intense photothermal therapy (PTT) effects and photothermal conversion efficiency. In vitro results suggested that these nanocomposites can kill oral cancer cells (HSC-3) without toxicity through irradiation of NIR laser, owing to the synergistic effect. The in vivo studies indicated that these nanocomposites exhibited excellent antitumor effects through synergistic PDT/PTT/chemotherapy under a near-infrared (NIR) 808 nm laser irradiation. Thus, these AuNRs-TiO2@mS: UCNP nanocomposites have great potential to undergo deep tissue penetration with enhanced synergistic effects through NIR-triggered light for cancer treatment.


Asunto(s)
Nanopartículas , Nanotubos , Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Metotrexato/farmacología , Dióxido de Silicio , Oro/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Nanotubos/efectos de la radiación , Neoplasias/tratamiento farmacológico
19.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445640

RESUMEN

Graphene oxide-based materials (GOBMs) have been widely explored as nano-reinforcements in cementitious composites due to their unique properties. Oxygen-containing functional groups in GOBMs are crucial for enhancing the microstructure of cementitious composites. A better comprehension of their surface chemistry and mechanisms is required to advance the potential applications in cementitious composites of functionalized GOBMs. However, the mechanism by which the oxygen-containing functional groups enhance the response of cementitious composites is still unclear, and controlling the surface chemistry of GOBMs is currently constrained. This review aims to investigate the reactions and mechanisms for functionalized GOBMs as additives incorporated in cement composites. A variety of GOBMs, including graphene oxide (GO), hydroxylated graphene (HO-G), edge-carboxylated graphene (ECG), edge-oxidized graphene oxide (EOGO), reduced graphene oxide (rGO), and GO/silane composite, are discussed with regard to their oxygen functional groups and interactions with the cement microstructure. This review provides insight into the potential benefits of using GOBMs as nano-reinforcements in cementitious composites. A better understanding of the surface chemistry and mechanisms of GOBMs will enable the development of more effective functionalization strategies and open up new possibilities for the design of high-performance cementitious composites.


Asunto(s)
Grafito , Grafito/química , Oxígeno
20.
Food Chem ; 426: 136609, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331138

RESUMEN

In this study, a polydopamine/titanium carbide adorned with gold nanoparticles (Au@PDA/TiC) composite was prepared by a simple stirring technique and it was used for the dual-technique detection of ß-Nicotinamide adenine dinucleotide (NADH). The Au@PDA/TiC-modified glassy carbon electrode (GCE) oxidized NADH at a very low oxidation potential of approximately 0.60 V vs Ag/AgCl in pH = 7.0 (0.1 M PBS) via the transfer of two electrons and one proton (from NADH to NAD+). Based on the (i-t) amperometry mode, NADH can be quantified with a linear range of 0.018-674 µM and LOD of 0.0062 µM. In addition to the DPV mode, the electrochemical sensor had a linearity of 5-450 µM with a LOD of 3.17 µM. The developed sensor exhibited remarkable analytical performances concerning high sensitivity, electrocatalytic activity, low detection limit, wide linearity, appreciable specificity, repeatability, stability, reproducibility, and adequate recovery results in food, environmental and biological samples.


Asunto(s)
Nanopartículas del Metal , NAD , Oro , Reproducibilidad de los Resultados , Carbono , Electrodos , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...