Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39330704

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is the most common and severe subtype of temporomandibular disease characterized by inflammation and cartilage matrix degradation. Compared with traditional conservative treatment, small interfering RNAs (siRNAs) have emerged as a more efficient gene-targeted therapeutic tool for TMJOA treatment. Nuclear factor kappaB (NF-κB) is a transcription factor orchestrating the inflammatory processes in the pathogenesis of TMJOA. Employing siRNA-NF-κB could theoretically control the development of TMJOA. However, the clinical applications of siRNA-NF-κB are limited by its structural instability, poor cellular uptake, and short TMJ retention. To overcome these shortcomings, we developed a tetrahedral framework nucleic acid (tFNA) system carrying siRNA-NF-κB, named Tsi. The results indicated that Tsi exhibited excellent structural stability and excellent cellular uptake efficiency. It also demonstrated a superior NF-κB silencing effect over siRNA alone, attenuating the activation of NF-κB and upregulating the NRF2/HO-1 pathway. This system effectively reduced the release of inflammatory factors and reactive oxygen species (ROS), inhibiting cellular oxidative stress and apoptosis. In vivo, Tsi displayed enhanced TMJ retention capacity in comparison to siRNA alone and offered significant protective effects on both the cartilage matrix and subchondral bone, presenting a promising approach for TMJOA treatment.

2.
ACS Nano ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268926

RESUMEN

Retinal neovascular disease is a leading cause of vision loss and blindness globally. It occurs when abnormal new blood vessels form in the retina. In this study, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to load quercetin (QUE), a small-molecule flavonoid, forming a deoxyribonucleic acid (DNA) nanocomplex, tFNAs-QUE. Our data show this nanocomplex inhibits pathological neovascularization, reduces the area of retinal nonperfusion area, protects retinal neurons, and preserves the visual function. Further, we discovered that tFNAs-QUE selectively upregulates the AKT/Nrf2/HO-1 signaling pathway, which can suppress pathological vascular growth and exert antioxidative effects. Therefore, this study presents a promising small-molecule-loading mechanism for the treatment of ischemic retinal diseases.

3.
Small ; : e2406629, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279370

RESUMEN

Infected wounds are a complex disease involving bacterial infections and dysregulated inflammation. However, current research has mostly focused on bacterial inhibition rather than on inflammation. Thus, combined therapeutic strategies with anti-bacterial and anti-inflammation efficacies are urgently needed. Antibiotics are the main treatment strategy for infections. However, the excessive use of antibiotics throughout the body can cause serious side effects. In addition, miRNA-based therapeutics are superior for the treatment of wounds, but their rapid degradation and poor cellular uptake limit their clinical application. Tetrahedral framework DNA (tFNA) is an ideal drug delivery system owing to its excellent stability and remarkable transport ability. Herein, a novel multi-functional miRNA and antibiotic co-delivery system based on tFNA is presented for the first time, called B/L. B/L has heightened resistance to serum and excellent codelivery ability. After transdermal administration, B/L can specifically target TNF receptor-associated factor 6(TRAF6) and IL-1receptor-associated kinase 1(IRAK1), thereby regulating nuclear factor kappa-B (NF-𝜿B) and thus effectively reducing inflammation and promoting the healing of infected wounds. This novel multi-functional co-delivery system provides a versatile, simple, biocompatible, and powerful platform for the personalized and combined treatment of multiple diseases.

4.
Bioact Mater ; 40: 634-648, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39253616

RESUMEN

Articular cartilage injury (ACI) remains one of the key challenges in regenerative medicine, as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage. Enhancing endogenous repair via microRNAs (miRNAs) shows promise as a regenerative therapy. miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid (tFNA)-based targeting miRNA codelivery system, named A-T-M, was used. With tFNAs as vehicles, miR-140 and miR-455 were connected to and modified on tFNAs, while Apt19S (a DNA aptamer targeting MSCs) was directly integrated into the nanocomplex. The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms. Interestingly, a synergistic effect between miR-140 and miR-455 was revealed. Furthermore, A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation. A-T-M provides a new perspective and strategy for the regeneration of articular cartilage, showing strong clinical application value in the future treatment of ACI.

5.
J Control Release ; 375: 155-177, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39242033

RESUMEN

Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.

6.
ACS Nano ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276332

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible lung disease, and developing an effective treatment remains a challenge. The limited therapeutic options are primarily delivered by the oral route, among which pirfenidone (PFD) improves pulmonary dysfunction and patient quality of life. However, its high dose and severe side effects (dyspepsia and systemic photosensitivity) limit its clinical value. Intratracheal aerosolization is an excellent alternative method for treating lung diseases because it increases the concentration of the drug needed to reach the focal site. Tetrahedral framework nucleic acid (tFNA) is a drug delivery system with exceptional delivery capabilities. Therefore, we synthesized a PFD-tFNA (Pt) complex using tFNA as the delivery vehicle and achieved quantitative nebulized drug delivery to the lungs via micronebulizer for lung fibrosis treatment. In vivo, Pt exhibited excellent immunomodulatory capacity and antioxidant effects. Furthermore, Pt reduced mortality, gradually restored body weight and improved lung tissue structure. Similarly, Pt also exhibited superior fibrosis inhibition in an in vitro fibrosis model, as shown by the suppression of excessive fibroblast activation and epithelial-mesenchymal transition (EMT) in epithelial cells exposed to TGF-ß1. Conclusively, Pt, a complex with tFNA as a transport system, could enrich the therapeutic regimen for IPF via intratracheal aerosolization inhalation.

7.
Small ; : e2404641, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152925

RESUMEN

Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.

8.
Cell Prolif ; : e13695, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086110

RESUMEN

Retinal ischemia/reperfusion injury (RI/R) is a common pathological process in ophthalmic diseases, which can cause severe visual impairment. The mechanisms underlying RI/R damage and repair are still unclear. Scholars are actively exploring effective intervention strategies to restore impaired visual function. With the development of nucleic acid nanomaterials, tetrahedral framework nucleic acids (tFNAs) have shown promising therapeutic potential in various fields such as stem cells, biosensors, and tumour treatment due to their excellent biological properties. Besides, miRNA-22-3p (miR-22), as an important regulatory factor in neural tissue, has been proven to have positive effects in various neurodegenerative diseases. By stably constructing a complex of tetrahedral framework nucleic acids miR22 (tFNAs-miR22), we observed that tFNAs-miR22 had a positive effect on the repair of RI/R injury in retinal neural tissue. Previous studies have shown that tFNAs can effectively deliver miR-22 into damaged retinal neurons, subsequently exerting neuroprotective effects. Interestingly, we found that there was a certain synergistic effect between tFNAs and miR-22. tFNAs-miR22 can selectively activated the ERK1/2 signalling pathway to reduce neuronal apoptosis, accelerate cell proliferation, and restore synaptic functional activity. In this study, we established a simple yet effective small molecule drug for RI/R treatment which may become a promising neuroprotectant for treating this type of vision impairment disease in the future.

9.
Nat Protoc ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215132

RESUMEN

As microRNAs (miRNA) regulate almost all physiopathological activities in the human body, miRNA therapeutics that deliver miRNA regulators have attracted considerable attention in the field of nucleic acid drug development. The use of tetrahedral DNA nanostructures to deliver miRNA regulators is promising because of their simple fabrication, enhanced cell entry, effective tissue penetration, biocompatibility and functional editability. This protocol extension builds on our previous protocol for the use of tetrahedral DNA nanostructures and was designed to establish an updated bioswitchable delivery system (BDS) for achieving controlled cargo loading and release. A ribonuclease H-sensitive sequence is designed as a bioswitchable apparatus for the targeted release of the miRNA regulator. The functional sequence of the miRNA regulator and minimal secondary structure formation tendency during annealing are two key points in cargo design. We provide two BDS design strategies; BDS-A comprises an intact DNA tetrahedron with the RNA cargo hanging outside, offering the merits of lower cost, simplicity, and more direct structural design. In the BDS-B design, the RNA regulators are embedded into the DNA tetrahedron, which is beneficial for dermal tissue permeation applications. Following sequence design in Oligo 7 and Tiamat, the BDS assembly is completed and then ribonuclease H achieves controlled release of the miRNA regulator by triggering the bioswitchable apparatus. This is verified via polyacrylamide and agarose gel electrophoresis or fluorophore modifications. Both BDSs show promising cellular membrane permeability, tissue permeability and target inhibition in vitro and in vivo. The assembly and characterization of the BDS can be completed in 4 d, and the validation time for biostability and biological applications will depend on the specific use.

10.
ACS Appl Mater Interfaces ; 16(26): 33192-33204, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885077

RESUMEN

The human body's primary line of defense, the skin, is especially prone to harm. Although microRNA (miRNA)-based therapies have attracted increasing attention for skin wound healing, their applications remain limited owing to a range of issues. Tetrahedral framework DNA (tFNA), a nanomaterial possessing nucleic acid characteristics, exhibits an excellent biocompatibility, in addition to anti-inflammatory and transdermal delivery capabilities, and can accelerate skin wound healing. Due to its potential to exert synergistic action with therapeutic miRNA, tFNA has been considered an ideal vehicle for miRNA therapy. The design and synthesis of a bioswitchable miRNA delivery system (BiRDS) is reported, which contains three miRNAs as well as a nucleic acid core to maximize the loading capacity while preserving the characteristics of tFNA. A high stability, excellent permeability of cells as well as tissues and good biological compatibility are demonstrated. By selectively inhibiting heparin-binding epidermal growth factor (HB-EGF), the BiRDS can inhibit the NF-κB pathway while simultaneously controlling the PTEN/Akt pathway. As a result, the BiRDS helps wound healing go through the inflammation to the proliferative phase. This study demonstrates the advantages of the BiRDS in miRNA-based therapy and provides new research ideas for the treatment of skin-related diseases.


Asunto(s)
ADN , MicroARNs , Cicatrización de Heridas , MicroARNs/metabolismo , MicroARNs/genética , Cicatrización de Heridas/efectos de los fármacos , Humanos , Animales , ADN/química , Ratones , Nanoestructuras/química , FN-kappa B/metabolismo
11.
Bioact Mater ; 39: 191-205, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38808157

RESUMEN

Unnecessary exposure to ionizing radiation (IR) often causes acute and chronic oxidative damages to normal cells and organs, leading to serious physiological and even life-threatening consequences. Amifostine (AMF) is a validated radioprotectant extensively applied in radiation and chemotherapy medicine, but the short half-life limits its bioavailability and clinical applications, remaining as a great challenge to be addressed. DNA-assembled nanostructures especially the tetrahedral framework nucleic acids (tFNAs) are promising nanocarriers with preeminent biosafety, low biotoxicity, and high transport efficiency. The tFNAs also have a relative long-term maintenance for structural stability and excellent endocytosis capacity. We therefore synthesized a tFNA-based delivery system of AMF for multi-organ radioprotection (tFNAs@AMF, also termed nanosuit). By establishing the mice models of accidental total body irradiation (TBI) and radiotherapy model of Lewis lung cancer, we demonstrated that the nanosuit could shield normal cells from IR-induced DNA damage by regulating the molecular biomarkers of anti-apoptosis and anti-oxidative stress. In the accidental total body irradiation (TBI) mice model, the nanosuit pretreated mice exhibited satisfactory alteration of superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents, and functional recovery of hematopoietic system, reducing IR-induced pathological damages of multi-organ and safeguarding mice from lethal radiation. More importantly, the nanosuit showed a selective radioprotection of the normal organs without interferences of tumor control in the radiotherapy model of Lewis lung cancer. Based on a conveniently available DNA tetrahedron-based nanocarrier, this work presents a high-efficiency delivery system of AMF with the prolonged half-life and enhanced radioprotection for multi-organs. Such nanosuit pioneers a promising strategy with great clinical translation potential for radioactivity protection.

12.
Cell Prolif ; 57(8): e13635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594962

RESUMEN

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are the world's leading causes of blindness. The retinal pigment epithelium (RPE) and vascular endothelial cell exposed to oxidative stress is the major cause of AMD and DR. DJ-1, an important endogenous antioxidant, its overexpression is considered as a promising antioxidant treatment for AMD and DR. Here, we modified the tetrahedral frame nucleic acids (tFNAs) with DJ-1 saRNAs as a delivery system, and synthesized a novel nanocomplex (tFNAs-DJ-1 saRNAs). In vitro studies show that tFNAs-DJ-1 saRNAs can efficiently transfer DJ-1 saRNAs to human umbilical vein endothelial cells (HUVECs) and ARPE-19s, and significantly increased their cellular DJ-1 level. Reactive oxygen species expression in H2O2-treated HUVECs and ARPE-19s were decreased, cell viability was enhanced and cell apoptosis were inhibited when tFNAs-DJ-1 saRNAs were delivered. Moreover, tFNAs-DJ-1 saRNAs preserved mitochondrial structure and function under oxidative stress conditions. In the aspect of molecular mechanism, tFNAs-DJ-1 saRNAs activated Erk and Nrf2 pathway, which might contribute to its protective effects against oxidative stress damage. To conclude, this study shows the successfully establishment of a simple but effective delivery system of DJ-1 saRNAs associated with antioxidant effects in AMD and DR, which may be a promising agent for future treatment in oxidative stress-related retinal disorders.


Asunto(s)
Antioxidantes , Células Endoteliales de la Vena Umbilical Humana , Estrés Oxidativo , Proteína Desglicasa DJ-1 , Humanos , Estrés Oxidativo/efectos de los fármacos , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Antioxidantes/farmacología , Antioxidantes/química , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Supervivencia Celular/efectos de los fármacos , Retina/metabolismo , Retina/efectos de los fármacos , Ácidos Nucleicos/farmacología , Ácidos Nucleicos/metabolismo , Línea Celular
13.
Cell Prolif ; 57(8): e13637, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38671577

RESUMEN

Oral squamous cell carcinoma (OSCC), a type of malignant tumour that primarily occurs in the oral mucosa, has drawn considerable attention owing to its aggressive growth and potentially high metastatic rate. Surgical resection is the primary treatment method for OSCC and is typically combined with radiation therapy and chemotherapy. microRNA-149-3p (miR-149) is a negative regulator of the Pi3k/Akt pathway and can effectively inhibit the proliferation of tumour cells. However, the application of miR-149 is limited owing to its relatively low efficiency of cellular uptake and poor stability when used alone. To overcome these challenges, this study adopted a novel nucleic acid nanostructured material, tetrahedral framework nucleic acids (tFNAs). The use of tFNAs as carriers to assemble the T-miR-149 complex reduced the expression of Pi3k and Akt involved in tumorigenesis and alterations in proteins related to cell apoptosis. The results indicated that the bionic drug delivery system has an effective tumour suppressive effect on OSCC in mice, revealing its potential clinical value in the treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , MicroARNs/administración & dosificación , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Animales , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Ratones , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ácidos Nucleicos/uso terapéutico , Ácidos Nucleicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos
14.
Int J Oral Sci ; 16(1): 30, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622128

RESUMEN

Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.


Asunto(s)
Infecciones Bacterianas , Ácidos Nucleicos , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ácidos Nucleicos/farmacología , Hidrogeles/farmacología , Hidrogeles/química , Cicatrización de Heridas , Antibacterianos/farmacología , Antiinflamatorios/farmacología
15.
BMC Pediatr ; 24(1): 277, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678190

RESUMEN

OBJECTIVE: This study aimed to compare the efficacy of neurally adjusted ventilatory assist (NAVA) to synchronized intermittent mandatory ventilation (SIMV) in preterm infants requiring mechanical ventilation after patent ductus arteriosus (PDA) ligation. METHODS: A retrospective analysis was conducted on intubated preterm infants who underwent PDA ligation at our hospital from July 2021 to January 2023. Infants were divided into NAVA or SIMV groups based on the ventilation mode after surgery. RESULTS: Fifty preterm infants were included. During treatment, peak inspiratory pressure (PIP) and mean airway pressure (MAP) were lower with NAVA compared to SIMV (PIP: 19.1 ± 2.9 vs. 22.4 ± 3.6 cmH2O, P < 0.001; MAP: 9.1 ± 1.8 vs. 10.9 ± 2.7 cmH2O, P = 0.002). PaO2 and PaO2/FiO2 were higher with NAVA (PaO2: 94.0 ± 11.7 vs. 84.8 ± 15.8 mmHg, P = 0.031; PaO2/FiO2: 267 [220-322] vs. 232 [186-290] mmHg, P = 0.025). Less sedation was required with NAVA (midazolam: 1.5 ± 0.5 vs. 1.1 ± 0.3 µg/kg/min, P < 0.001). CONCLUSION: Compared to SIMV, early use of NAVA post PDA ligation in preterm infants was associated with decreased PIP and MAP. Early NAVA was also associated with reduced sedation needs and improved oxygenation. However, further studies are warranted to quantify the benefits of NAVA ventilation.


Asunto(s)
Conducto Arterioso Permeable , Recien Nacido Prematuro , Soporte Ventilatorio Interactivo , Ventilación con Presión Positiva Intermitente , Humanos , Conducto Arterioso Permeable/cirugía , Conducto Arterioso Permeable/terapia , Estudios Retrospectivos , Recién Nacido , Masculino , Femenino , Ligadura/métodos , Soporte Ventilatorio Interactivo/métodos , Ventilación con Presión Positiva Intermitente/métodos , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia
16.
Adv Sci (Weinh) ; 11(21): e2308701, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460168

RESUMEN

Angiogenesis is crucial for tissue engineering, wound healing, and regenerative medicine. Nanomaterials constructed based on specific goals can be employed to activate endogenous growth factor-related signaling. In this study, based on the conventional single-stranded DNA self-assembly into tetrahedral framework nucleic acids (tFNAs), the Apt02 nucleic acid aptamer and dimethyloxallyl glycine (DMOG) small molecule are integrated into a complex via a template-based click chemistry reaction and toehold-mediated strand displacement reaction. Thus, being able to simulate the VEGF (vascular endothelial growth factor) function and stabilize HIF (hypoxia-inducible factor), a functional whole is constructed and applied to angiogenesis. Cellular studies demonstrate that the tFNAs-Apt02 complex (TAC) has a conspicuous affinity to human umbilical vein endothelial cells (HUVECs). Further incubation with DMOG yields the tFNAs-Apt02-DMOG complex (TACD), which promotes VEGF secretion, in vitro blood vessel formation, sprouting, and migration of HUVECs. Additionally, TACD enhances angiogenesis by upregulating the VEGF/VEGFR and HIF signaling pathways. Moreover, in a diabetic mouse skin defect repair process, TACD increases blood vessel formation and collagen deposition, therefore accelerating wound healing. The novel strategy simulating VEGF and stabilizing HIF promotes blood-vessel formation in vivo and in vitro and has the potential for broad applications in the vascularization field.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neovascularización Fisiológica/fisiología , Modelos Animales de Enfermedad , Ácidos Nucleicos/metabolismo , Cicatrización de Heridas/fisiología , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/farmacología , Angiogénesis
17.
Cell Prolif ; 57(7): e13624, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38414296

RESUMEN

Certain miRNAs, notably miR29c, demonstrate a remarkable capacity to regulate cellular osteogenic differentiation. However, their application in tissue regeneration is hampered by their inherent instability and susceptibility to degradation. In this study, we developed a novel miR29c delivery system utilising tetrahedral framework nucleic acids (tFNAs), aiming to enhance its stability and endocytosis capability, augment the efficacy of miR29c, foster osteogenesis in bone marrow mesenchymal stem cells (BMSCs), and significantly improve the repair of critical-sized bone defects (CSBDs). We confirmed the successful synthesis and biocompatibility of sticky ends-modified tFNAs (stFNAs) and miR29c-modified stFNAs (stFNAs-miR29c) through polyacrylamide gel electrophoresis, microscopy scanning, a cell counting kit-8 assay and so on. The mechanism and osteogenesis effects of stFNAs-miR29c were explored using immunofluorescence staining, western blotting, and reserve transcription quantitative real-time polymerase chain reaction. Additionally, the impact of stFNAs-miR29c on CSBD repair was assessed via micro-CT and histological staining. The nano-carrier, stFNAs-miR29c was successfully synthesised and exhibited exemplary biocompatibility. This nano-nucleic acid material significantly upregulated osteogenic differentiation-related markers in BMSCs. After 2 months, stFNAs-miR29c demonstrated significant bone regeneration and reconstruction in CSBDs. Mechanistically, stFNAs-miR29c enhanced osteogenesis of BMSCs by upregulating the Wnt signalling pathway, contributing to improved bone tissue regeneration. The development of this novel nucleic acid nano-carrier, stFNAs-miR29c, presents a potential new avenue for guided bone regeneration and bone tissue engineering research.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Cráneo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Animales , Cráneo/patología , Ácidos Nucleicos , Células Cultivadas , Masculino , Ratas Sprague-Dawley , Ratones , Humanos , Ratas
18.
Cell Prolif ; 57(7): e13625, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38414318

RESUMEN

Osteoporosis (OP) is a common disease characterized by bone loss and bone tissue microstructure degradation. Drug treatment is a common clinical treatment that aims to increase bone mass and bone density. Tetrahedral DNA nanostructures (TDNs) are three-dimensional tetrahedral frames formed by folding four single-stranded DNA molecules, which have good biological safety and can promote bone regeneration. In this study, a mouse model of OP was established by ovariectomy (OVX) and TDN was injected into the tail vein for 8 weeks. We found that ovariectomized mice could simulate some physiological changes in OP. After treatment with TDNs, some of this destruction in mice was significantly improved, including an increase in the bone volume fraction (BV/TV) and bone trabecular number (Tb. N), decrease in bone separation (Tb. SP), reduction in the damage to the mouse cartilage layer, reduction in osteoclast lacunae in bone trabecula, and reduction in the damage to the bone dense part. We also found that the expression of ALP, ß-Catenin, Runx2, Osterix, and bone morphogenetic protein (BMP)2 significantly decreased in OVX mice but increased after TDN treatment. Therefore, this study suggests that TDNs may regulate the Wnt/ß-Catenin and BMP signalling pathways to improve the levels of some specific markers of osteogenic differentiation, such as Runx2, ALP, and Osterix, to promote osteogenesis, thus showing a therapeutic effect on OP mice.


Asunto(s)
Nanoestructuras , Osteoporosis , Ovariectomía , Animales , Osteoporosis/tratamiento farmacológico , Osteoporosis/patología , Osteoporosis/metabolismo , Femenino , Nanoestructuras/química , Ratones , ADN/metabolismo , Ratones Endogámicos C57BL , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Vía de Señalización Wnt/efectos de los fármacos , Proteína Morfogenética Ósea 2/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos
19.
Bone Res ; 12(1): 14, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424439

RESUMEN

Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.


Asunto(s)
Curcumina , Diabetes Mellitus , Ferroptosis , Nanopartículas , Ácidos Nucleicos , Osteoporosis , Humanos , Curcumina/farmacología , Osteogénesis , Nanopartículas/uso terapéutico , Osteoporosis/tratamiento farmacológico
20.
Adv Sci (Weinh) ; 11(17): e2306622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353402

RESUMEN

Hydrocephalus is one of the most common brain disorders and a life-long incurable condition. An empirical "one-size-fits-all" approach of cerebrospinal fluid (CSF) shunting remains the mainstay of hydrocephalus treatment and effective pharmacotherapy options are currently lacking. Macrophage-mediated ChP inflammation and CSF hypersecretion have recently been identified as a significant discovery in the pathogenesis of hydrocephalus. In this study, a pioneering DNA nano-drug (TSOs) is developed by modifying S2 ssDNA and S4 ssDNA with SPAK ASO and OSR1 ASO in tetrahedral framework nucleic acids (tFNAs) and synthesis via a one-pot annealing procedure. This construct can significantly knockdown the expression of SPAK and OSR1, along with their downstream ion channel proteins in ChP epithelial cells, thereby leading to a decrease in CSF secretion. Moreover, these findings indicate that TSOs effectively inhibit the M0 to M1 phenotypic switch of ChP macrophages via the MAPK pathways, thus mitigating the cytokine storm. In in vivo post-hemorrhagic hydrocephalus (PHH) models, TSOs significantly reduce CSF secretion rates, alleviate ChP inflammation, and prevent the onset of hydrocephalus. These compelling results highlight the potential of TSOs as a promising therapeutic option for managing hydrocephalus, with significant applications in the future.


Asunto(s)
Modelos Animales de Enfermedad , Hidrocefalia , Proteínas Serina-Treonina Quinasas , Animales , Masculino , Líquido Cefalorraquídeo/metabolismo , Hidrocefalia/genética , Macrófagos/metabolismo , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...