Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 625(7993): 175-180, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093006

RESUMEN

Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of ß-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.


Asunto(s)
Tejido Adiposo , Lipólisis , Neuronas , Oxitocina , Animales , Humanos , Ratones , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Agonistas Adrenérgicos beta/farmacología , Lipólisis/efectos de los fármacos , Neuronas/metabolismo , Oxitocina/metabolismo , Oxitocina/farmacología , Tirosina 3-Monooxigenasa/metabolismo
2.
Elife ; 112022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346018

RESUMEN

While dysregulation of adipocyte endocrine function plays a central role in obesity and its complications, the vast majority of adipokines remain uncharacterized. We employed bio-orthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry to comprehensively characterize the secretome of murine visceral and subcutaneous white and interscapular brown adip ocytes. Over 600 proteins were identified, the majority of which showed cell type-specific enrichment. We here describe a metabolic role for leucine-rich α-2 glycoprotein 1 (LRG1) as an obesity-regulated adipokine secreted by mature adipocytes. LRG1 overexpression significantly improved glucose homeostasis in diet-induced and genetically obese mice. This was associated with markedly reduced white adipose tissue macrophage accumulation and systemic inflammation. Mechanistically, we found LRG1 binds cytochrome c in circulation to dampen its pro-inflammatory effect. These data support a new role for LRG1 as an insulin sensitizer with therapeutic potential given its immunomodulatory function at the nexus of obesity, inflammation, and associated pathology.


Asunto(s)
Adipoquinas , Resistencia a la Insulina , Animales , Ratones , Inflamación , Insulina , Obesidad , Ratones Obesos , Glicoproteínas/genética
3.
Methods Mol Biol ; 2448: 73-82, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35167090

RESUMEN

Adipose tissue is not simply a collection of lipid storing fat cells, but is now recognized to be a complex tissue with a central role in whole body energy homeostasis. In order to understand how adipocytes and associated cell types interact in normal physiology and in pathological states like obesity, it is critical to obtain a holistic view of cells and structures in three dimensions. To that end, we have adapted the iDISCO/iDISCO+ tissue clearing protocol to facilitate the delipidation of fat tissues, while still maintaining their architecture. We describe here this method, that we refer to as Adipo-Clear, highlighting key steps in the protocol as well as important technical considerations. This versatile approach can provide entirely new insights into adipose tissue biology in health and disease.


Asunto(s)
Tejido Adiposo , Imagenología Tridimensional , Adipocitos
4.
Science ; 373(6552)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34437125

RESUMEN

Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3+ T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (TFH) cells. Ectopic expression of Foxp3 in TFH cells is sufficient to decrease GC size, implicating the natural up-regulation of Foxp3 by TFH cells as a potential regulator of GC lifetimes.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Factores de Transcripción Forkhead/genética , Centro Germinal/inmunología , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD4-Positivos/fisiología , Factores de Transcripción Forkhead/metabolismo , Genes Codificadores de los Receptores de Linfocitos T , Centro Germinal/citología , Inmunización , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual , Células T Auxiliares Foliculares/inmunología , Linfocitos T Reguladores/fisiología , Regulación hacia Arriba
5.
Elife ; 102021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33591269

RESUMEN

While beige adipocytes have been found to associate with dense sympathetic neurites in mouse inguinal subcutaneous white fat (iWAT), little is known about when and how this patterning is established. Here, we applied whole-tissue imaging to examine the development of sympathetic innervation in iWAT. We found that parenchymal neurites actively grow between postnatal day 6 (P6) and P28, overlapping with early postnatal beige adipogenesis. Constitutive deletion of Prdm16 in adipocytes led to a significant reduction in early postnatal beige adipocytes and sympathetic density within this window. Using an inducible, adipocyte-specific Prdm16 knockout model, we found that Prdm16 is required for guiding sympathetic growth during early development. Deleting Prdm16 in adult animals, however, did not affect sympathetic structure in iWAT. Together, these findings highlight that beige adipocyte-sympathetic neurite communication is crucial to establish sympathetic structure during the early postnatal period but may be dispensable for its maintenance in mature animals.


Mammals have two types of fatty tissue: white fat that mainly stores energy, and brown and beige fat, also known as thermogenic fat, which burns energy to generate heat. In humans, brown fat is associated with potent anti-obesity and anti-diabetes effects. A better understanding of how this type of fat develops and functions could lead to therapeutic strategies to treat these conditions. Adult human brown fat is similar to rodent inducible brown fat, also known as beige fat. In adult mice, beige fat cells need stimulation from the environment to form. Cold can lead to the generation of beige fat cells by activating a part of the nervous system known as the sympathetic nervous system. In order for this cold-induced formation of beige fat cells to take place, nerves from the sympathetic nervous system must first innervate the fatty tissue. Beige fat cells themselves are important for establishing this innervation, but it was not well understood when and how this occurs. To study the role of beige fat cells in the establishment of nerve innervation, Chi et al. used genetically modified mice whose beige fat cells are removed when they are treated with an antibiotic called doxycycline. If mice that had not been genetically modified were treated with doxycycline, they developed beige fat cells soon after birth, and these cells shortly became densely innervated by the sympathetic nervous system. However, if the mutant mice were treated with doxycycline around birth, these mice could not make beige fat cells during the treatment and failed to develop dense innervation even when they grew older. These results showed that beige fat cells that form soon after birth are necessary to establish sympathetic nervous system innervation. But are beige fat cells required to maintain this innervation as the mice grow older? To test this, Chi et al. removed them after the innervation was fully established. These mice maintained their innervation, showing that beige fat cells appear to only be required during the establishment of innervation. Understanding how the sympathetic nervous system establishes its connection to fat so cold can stimulate beige fat formation is a first step to finding new treatments for conditions such as diabetes or obesity. Exploring the timing that underlies the interactions between the sympathetic nervous system and beige fat cells may provide therapeutic targets in this direction.


Asunto(s)
Adipocitos Beige/fisiología , Neuritas/fisiología , Grasa Subcutánea/inervación , Animales , Comunicación Celular , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Grasa Subcutánea/crecimiento & desarrollo , Factores de Transcripción
6.
Proc Natl Acad Sci U S A ; 117(39): 24243-24250, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929037

RESUMEN

The necrotrophic fungal pathogen Cochliobolus victoriae produces victorin, a host-selective toxin (HST) essential for pathogenicity to certain oat cultivars with resistance against crown rust. Victorin is a mixture of highly modified heterodetic cyclic hexapeptides, previously assumed to be synthesized by a nonribosomal peptide synthetase. Herein, we demonstrate that victorin is a member of the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Analysis of a newly generated long-read assembly of the C. victoriae genome revealed three copies of precursor peptide genes (vicA1-3) with variable numbers of "GLKLAF" core peptide repeats corresponding to the victorin peptide backbone. vicA1-3 are located in repeat-rich gene-sparse regions of the genome and are loosely clustered with putative victorin biosynthetic genes, which are supported by the discovery of compact gene clusters harboring corresponding homologs in two distantly related plant-associated Sordariomycete fungi. Deletion of at least one copy of vicA resulted in strongly diminished victorin production. Deletion of a gene encoding a DUF3328 protein (VicYb) abolished the production altogether, supporting its predicted role in oxidative cyclization of the core peptide. In addition, we uncovered a copper amine oxidase (CAO) encoded by vicK, in which its deletion led to the accumulation of new glycine-containing victorin derivatives. The role of VicK in oxidative deamination of the N-terminal glycyl moiety of the hexapeptides to the active glyoxylate forms was confirmed in vitro. This study finally unraveled the genetic and molecular bases for biosynthesis of one of the first discovered HSTs and expanded our understanding of underexplored fungal RiPPs.


Asunto(s)
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Ascomicetos/genética , Desaminación , Proteínas Fúngicas/genética , Proteínas Fúngicas/toxicidad , Eliminación de Gen , Familia de Multigenes , Micotoxinas/genética , Micotoxinas/toxicidad , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional
7.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837342

RESUMEN

Histone-linked extracellular DNA (exDNA) is a component of neutrophil extracellular traps (NETs). NETs have been shown to play a role in immune response to bacteria, fungi, viruses, and protozoan parasites. Mutation of genes encoding group A Streptococcus extracellular DNases (exDNases) results in reduced virulence in animals, a finding that implies that exDNases are deployed as counter defense against host DNA-containing NETs. Is the exDNA/exDNase mechanism also relevant to plants and their pathogens? It has been demonstrated previously that exDNA is a component of a matrix secreted from plant root caps and that plants also carry out an extracellular trapping process. Treatment with DNase I destroys root tip resistance to infection by fungi, the most abundant plant pathogens. We show that the absence of a single gene encoding a candidate exDNase results in significantly reduced virulence of a fungal plant pathogen to its host on leaves, the known infection site, and on roots. Mg2+-dependent exDNase activity was demonstrated in fungal culture filtrates and induced when host leaf material was present. It is speculated that the enzyme functions to degrade plant-secreted DNA, a component of a complex matrix akin to neutrophil extracellular traps of animals.IMPORTANCE We document that the absence of a single gene encoding a DNase in a fungal plant pathogen results in significantly reduced virulence to a plant host. We compared a wild-type strain of the maize pathogen Cochliobolus heterostrophus and an isogenic mutant lacking a candidate secreted DNase-encoding gene and demonstrated that the mutant is reduced in virulence on leaves and on roots. There are no previous reports of deletion of such a gene from either an animal or plant fungal pathogen accompanied by comparative assays of mutants and wild type for alterations in virulence. We observed DNase activity, in fungal culture filtrates, that is Mg2+ dependent and induced when plant host leaf material is present. Our findings demonstrate not only that fungi use extracellular DNases (exDNases) for virulence, but also that the relevant molecules are deployed in above-ground leaves as well as below-ground plant tissues. Overall, these data provide support for a common defense/counter defense virulence mechanism used by animals, plants, and their fungal and bacterial pathogens and suggest that components of the mechanism might be novel targets for the control of plant disease.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , ADN de Plantas/metabolismo , Desoxirribonucleasas/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Factores de Virulencia/metabolismo , Animales , Hidrólisis , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA