RESUMEN
Computing in memory (CIM) breaks the conventional von Neumann bottleneck through in situ processing. Monolithic integration of digital and analog CIM hardware, ensuring both high precision and energy efficiency, provides a sustainable paradigm for increasingly sophisticated artificial intelligence (AI) applications but remains challenging. Here, we propose a complementary metal-oxide semiconductor-compatible ferroelectric hybrid CIM platform that consists of Boolean logic and triggers for digital processing and multistage cell arrays for analog computation. The basic ferroelectric-gated units are assembled with solution-processable two-dimensional (2D) molybdenum disulfide atomic-thin channels at a wafer-scale yield of 96.36%, delivering high on/off ratios (>107), high endurance (>1012), long retention time (>10 years), and ultralow cycle-to-cycle/device-to-device variations (~0.3%/~0.5%). Last, we customize a highly compact 2D hybrid CIM system for dynamic tracking, achieving a high accuracy of 99.8% and a 263-fold improvement in power efficiency compared to graphics processing units. These results demonstrate the potential of 2D fully ferroelectric-gated hybrid hardware for developing versatile CIM blocks for AI tasks.
RESUMEN
Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.
RESUMEN
Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.
RESUMEN
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
RESUMEN
Two-dimensional material-based field-effect transistors (2DM-FETs) are playing a revolutionary role in electronic devices. However, before electronic design automation (EDA) for 2DM-FETs can be achieved, it remains necessary to determine how to incorporate contact transports into model. Reported methods compromise between physical intelligibility and model compactness due to the heterojunction nature. To address this, quasi-Fermi-level phase space theory (QFLPS) is generalized to incorporate contact transports using the Landauer formula. It turns out that the Landauer-QFLPS model effectively overcomes the issue of concern. The proposed new formula can describe 2DM-FETs with Schottky or Ohmic contacts with superior accuracy and efficiency over previous methods, especially when describing non-monotonic drain conductance characteristics. A three-bit threshold inverter quantizer (TIQ) circuit is fabricated using ambipolar black phosphorus and it is demonstrated that the model accurately predicts circuit performance. The model could be very effective and valuable in the development of 2DM-FET-based integrated circuits.
RESUMEN
Elemental 2D materials (E2DMs) have been attracting considerable attention owing to their chemical simplicity and excellent/exotic properties. However, the lack of robust chemical synthetic methods seriously limits their potential. Here, a surfactant-free liquid-phase synthesis of high-quality 2D tellurium is reported based on ultrasonication-assisted exfoliation of metastable 1T'-MoTe2 . The as-grown 2D tellurium nanosheets exhibit excellent single crystallinity, ideal 2D morphology, surfactant-free surface, and negligible 1D by-products. Furthermore, a unique growth mechanism based on the atomic escape of Te atoms from metastable transition metal dichalcogenides and guided 2D growth in the liquid phase is proposed and verified. 2D tellurium-based field-effect transistors show ultrahigh hole mobility exceeding 1000 cm2 V-1 s-1 at room temperature attributing to the high crystallinity and surfactant-free surface, and exceptional chemical and operational stability using both solid-state dielectric and liquid-state electrical double layer. The facile ultrasonication-assisted synthesis of high-quality 2D tellurium paves the way for further exploration of E2DMs and expands the scope of liquid-phase exfoliation (LPE) methodology toward the controlled wet-chemical synthesis of functional nanomaterials.
RESUMEN
Electrochemical molecular intercalation of layered semiconducting crystals with organic cations followed by ultrasonic exfoliation has proven to be an effective approach to producing a rich family of organic/inorganic hybrid superlattices and high-quality, solution-processable 2D semiconductors. A traditional method for exfoliating 2D crystals relies on the intercalation of inorganic alkali metal cations. The organic cations (e.g., alkyl chain-substituted quaternary ammonium cations) are much larger than their inorganic counterparts, and the bulky molecular structure endows distinct intercalation and exfoliation chemistry, as well as molecular tunability. By using this protocol, many layered 2D crystals (including graphene, black phosphorus and versatile metal chalcogenides) can be electrochemically intercalated with organic quaternary alkylammonium cations. Subsequent solution-phase exfoliation of the intercalated compounds is realized by regular bath sonication for a short period (5-30 min) to produce free-standing, thin 2D nanosheets. It is also possible to graft additional ligands on the nanosheet surface. The thickness of the exfoliated nanosheets can be measured by using atomic force microscopy and Raman spectroscopy. Modifying the chemical structure and geometrical configuration of alkylammonium cations results in different exfoliation behavior and a family of versatile organic/inorganic hybrid superlattices with tunable physical/chemical properties. The whole protocol takes ~6 h for the successful production of stable, ultrathin 2D nanosheet dispersion in solution and another 11 h for depositing thin films and transferring them onto an arbitrary surface. This protocol does not require expertise beyond basic electrochemistry knowledge and conventional colloidal nanocrystal synthesis and processing.
Asunto(s)
Grafito , Nanopartículas , Electroquímica , Microscopía de Fuerza Atómica , FósforoRESUMEN
In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.
RESUMEN
2D semiconductor crystals offer the opportunity to further extend Moore's law to the atomic scale. For practical and low-cost electronic applications, directly printing devices on substrates is advantageous compared to conventional microfabrication techniques that utilize expensive photolithography, etching, and vacuum-metallization processes. However, the currently printed 2D transistors are plagued by unsatisfactory electrical performance, thick semiconductor layers, and low device density. Herein, a facile and scalable 2D semiconductor printing strategy is demonstrated utilizing the interface capture effect and hyperdispersed 2D nanosheet ink to fabricate high-quality and atomic-thick semiconductor thin-film arrays without additional surfactants. Printed robust thin-film transistors using 2D semiconductors (e.g., MoS2 ) and 2D conductive electrodes (e.g., graphene) exhibit high electrical performance, including a carrier mobility of up to 6.7 cm2 V-1 s-1 and an on/off ratio of 2 × 106 at 25 °C. As a proof of concept, 2D transistors are printed with a density of ≈47 000 devices per square centimeter. In addition, this method can be applied to many other 2D materials, such as NbSe2 , Bi2 Se3 , and black phosphorus, for printing diverse high-quality thin films. Thus, the strategy of printable 2D thin-film transistors provides a scalable pathway for the facile manufacturing of high-performance electronics at an affordable cost.
RESUMEN
The conformal integration of electronic systems with irregular, soft objects is essential for many emerging technologies. We report the design of van der Waals thin films consisting of staggered two-dimensional nanosheets with bond-free van der Waals interfaces. The films feature sliding and rotation degrees of freedom among the staggered nanosheets to ensure mechanical stretchability and malleability, as well as a percolating network of nanochannels to endow permeability and breathability. With an excellent mechanical match to soft biological tissues, the freestanding films can naturally adapt to local surface topographies and seamlessly merge with living organisms with highly conformal interfaces, rendering living organisms with electronic functions, including leaf-gate and skin-gate transistors. On-skin transistors allow high-fidelity monitoring and local amplification of skin potentials and electrophysiological signals.
RESUMEN
Polymeric membrane ion-selective electrodes (ISEs) have been widely used in various fields including clinical diagnosis, environmental monitoring and industrial analysis. Although most samples of analytical interest measured by the ISEs are aqueous solutions, the applications of these electrodes in nonaqueous media are often inevitable. Unfortunately, so far, little has been known about the extent to which the properties of the ISEs could be affected by the organic solvents. Herein, the feasibility for the applications of the polymeric membrane ISEs in nonaqueous media has been investigated. A polymeric membrane Ca2+-ISE is chosen as a model of potentiometric sensors. Four typical water miscible organic solvents (three protic solvents: ethanol, acetic acid, and methanol, and one aprotic dipolar solvent: acetonitrile) are used as the representative examples. Experiments show that the aprotic solvent acetonitrile has the strongest destructive ability towards the sensing performance of the ISE in terms of Nernstian slope and selectivity coefficient. Moreover, the effect on the sensing performance depends on the kind of the protic solvent, the immersion time and the polarity of the membrane plasticizer. We believe that the obtained results could promote further applications of the polymeric membrane ISEs in the organic solvent-containing samples, which could significantly extend the application scope of the ISEs.
Asunto(s)
Electrodos de Iones Selectos , Polímeros , Monitoreo del Ambiente , Potenciometría/métodos , SolventesRESUMEN
Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.
RESUMEN
2D layered materials typically feature strong in-plane covalent chemical bonding within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in-plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas-phase intercalation, electrochemical intercalation, and ion-exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given.
RESUMEN
Two-dimensional (2D) materials1,2 and the associated van der Waals (vdW) heterostructures3-7 have provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching requirements, through layer-by-layer mechanical restacking or sequential synthesis. However, the 2D vdW heterostructures explored so far have been usually limited to relatively simple heterostructures with a small number of blocks8-18. The preparation of high-order vdW superlattices with larger number of alternating units is exponentially more difficult, owing to the limited yield and material damage associated with each sequential restacking or synthesis step8-29. Here we report a straightforward approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from 2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This strategy can be extended to create diverse 2D/2D vdW superlattices, more complex 2D/2D/2D vdW superlattices, and beyond-2D materials, including three-dimensional (3D) thin-film materials and 1D nanowires, to generate mixed-dimensional vdW superlattices, such as 3D/2D, 3D/2D/2D, 1D/2D and 1D/3D/2D vdW superlattices. This study demonstrates a general approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality and topology, and defines a rich material platform for both fundamental studies and technological applications.
RESUMEN
All-inorganic lead halide perovskites have attracted tremendous interest for their excellent stability when compared with hybrid perovskites. Here we report a large-area growth of monocrystalline all-inorganic perovskite thin films and further patterning them into heterostructure arrays. We show that highly oriented CsPbBr3 microcrystal domains can be readily grown on muscovite mica substrates with a well-defined epitaxial relationship, which can further expand and eventually merge into large-area monocrystalline CsPbBr3 thin films with an excellent optical quality. Taking a step further, we show the large-area CsPbBr3 thin film can be further patterned and selectively transformed into CsPbI3 using a selective anion-exchange process to produce CsPbBr3-CsPbI3 lateral heterostructure arrays with spatially modulated photoluminescence emission and an apparent current rectification behavior. The capability to grow large-area CsPbBr3 monocrystalline thin films and heterostructure arrays defines a robust material platform for both the fundamental investigations and potential applications in optoelectronics.
RESUMEN
Lead halide perovskites have attracted increasing interest for their exciting potential in diverse optoelectronic devices. However, their charge transport properties remain elusive, plagued by the issues of excessive contact resistance and large hysteresis in ambient conditions. Here we report a van der Waals integration approach for creating high-performance contacts on monocrystalline halide perovskite thin films with minimum interfacial damage and an atomically clean interface. Compared to the deposited contacts, our van der Waals contacts exhibit two to three orders of magnitude lower contact resistance, enabling systematic transport studies in a wide temperature range. We report a Hall mobility exceeding 2,000 cm2 V-1 s-1 at around 80 K, an ultralow bimolecular recombination coefficient of 3.5 × 10-15 cm3 s-1 and a photocurrent gain >106 in the perovskite thin films. Furthermore, magnetotransport studies reveal a quantum-interference-induced weak localization behaviour with a phase coherence length up to 49 nm at 3.5 K. Our results lay the foundation for exploring new physics in this class of 'soft-lattice' materials.
RESUMEN
Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest1-4. However, most vdWHs reported so far are created by an arduous micromechanical exfoliation and manual restacking process5, which-although versatile for proof-of-concept demonstrations6-16 and fundamental studies17-30-is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe2/WSe2, NiTe2/WSe2, CoTe2/WSe2, NbTe2/WSe2, VS2/WSe2, VSe2/MoS2 and VSe2/WS2. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moiré superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe2 with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe2 transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices.
RESUMEN
van der Waals (vdW) integration offers a flexible strategy to nearly arbitrarily combine materials of radically different chemical compositions, crystal structures, or lattice orientations, enabling versatile heterostructures with unique electronic and photonic characteristics or other exotic properties that are difficult to access in traditional epitaxial heterostructures, as highlighted by a recent blossom in two-dimensional (2D) vdW heterostructures. However, the studies on vdW heterostructures currently have been largely limited to 2D materials, with few reports of vdW integration of traditional three-dimensional (3D) materials. Here, we show that the vdW integration approach could be extended to 3D materials for flexible integration of highly disparate materials. In particular, by assembling nanomembranes fabricated from bulk ß-gallium oxide, silicon, and platinum, we demosntrate a variety of functional devices including Schottky diodes, p-n diodes, metal-semiconductor field-effect transistors, and junction field-effect transistors. These devices exhibit excellent electronic performance, in terms of ideality factor, current on/off ratio, and subthreshold swing, laying the foundations for constructing high-performance heterostructure devices.
RESUMEN
Thermoelectric generators are an environmentally friendly and reliable solid-state energy conversion technology. Flexible and low-cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report Bi2Te3 thin films are deposited on a flexible polyimide substrate using low-cost and scalable manufacturing methods. The synthesized Bi2Te3 nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW/m·K2 at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests were performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50mm ROC, the change in electrical resistance of the film was 23%. Using our Bi2Te3 solutions, we demonstrated the ability to print thermoelectric thin films with an aerosol jet printer, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators.