Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(16): e2312590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227454

RESUMEN

Fiber solar cells as promising wearable power supplies have attracted increasing attentions recently, while further breakthrough on their power conversion efficiency (PCE) and realization of multicolored appearances remain urgent needs particularly in real-world applications. Here, a fiber-dye-sensitized solar cell (FDSSC) integrated with a light diffusion layer composed of alumina/polyurethane film on the outmost encapsulating tube and a light conversion layer made from phosphors/TiO2/poly(vinylidene fluoride-co-hexafluoropropylene) film on the inner counter electrode is designed. The incident light is diffused to more surfaces of fiber electrodes, then converted on counter electrode and reflected to neighboring photoanode, so the FDSSC efficiently takes advantage of the fiber shape for remarkably enhanced light harvesting, producing a record PCE of 13.11%. These efficient FDSSCs also realize color-tunable appearances, improving their designability and compatibility with textiles. They are further integrated with fiber batteries as power systems, providing a power solution for wearables and emerging smart textiles.

2.
Adv Mater ; 36(11): e2304876, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37543841

RESUMEN

Photovoltaic devices represent an efficient electricity generation mode. Integrating them into textiles offers exciting opportunities for smart electronic textiles-with the ultimate goal of supplying power for wearable technology-which is poised to change how electronic devices are designed. Many human activities occur indoors, so realizing indoor photovoltaic fibers (IPVFs) that can be woven into textiles to power wearables is critical, although currently unavailable. Here, a dye-sensitized IPVF is constructed by incorporating titanium dioxide nanoparticles into aligned nanotubes to produce close contact and stable interfaces among active layers on a curved fiber substrate, thus presenting efficient charge transport and low charge recombination in the photoanode. With the combination of highly conductive core-sheath Ti/carbon nanotube fiber as a counter electrode, the IPVF shows a certified power conversion efficiency of 25.53% under 1500 lux illuminance. Its performance variation is below 5% after bending, twisting, or pressing for 1000 cycles. These IPVFs are further integrated with fiber batteries as self-charging power textiles, which are demonstrated to effectively supply electricity for wearables, solving the power supply problem in this important direction.

3.
Nanoscale Adv ; 2(2): 833-843, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36133221

RESUMEN

As the essential component of a quantum dot-sensitized solar cell (QDSC), the counter electrode (CE) plays an important role in electron transfer and catalytic reduction acquisition throughout the device. A novel route to design multilayer functionalized Cu2S thin films as CEs with high catalytic activity and enhanced stability, as well as large specific surface area and high conductivity, is presented. Firstly, Mo-based films were prepared by magnetron sputtering on a glass substrate, and then porous CuZnMo conductive films were formed by etching with hydrochloric acid. Secondly, indium tin oxide (ITO) film was sputtered onto the porous structure to act as a protective layer, and a porous ITO/CuZnMo structured film was obtained after optimization. In the third step, multilayer Cu(x)/ITO/CuZnMo structured films were acquired by sputtering Cu films. Finally, multilayer Cu2S(t)/ITO/CuZnMo functionalized film CEs were obtained via in situ sulfidation of sputtered Cu films. The functions of conduction and resistance to electrolyte corrosion were produced and enhanced by annealing an ITO layer at high temperature prior to Cu deposition, while catalytic activity enabled by Cu2S was realized from Cu film sulfidation. The multilayer Cu2S/ITO(500 °C)/CuZnMo functionalized films exhibit high catalytic activity and enhanced stability for resistance to electrolyte corrosion. Taking multilayer Cu2S/ITO(500 °C)/CuZnMo films as CEs, the QDSCs demonstrated good stability of power conversion efficiency (PCE) after 500 h of irradiation, from an initial 4.21% to a final 4.00%. Furthermore, the thickness of Cu2S film modulated by the duration of Cu sputtering was investigated. It was found that the QDSCs using multilayer Cu2S(40 min)/ITO/CuZnMo functionalized film with a Cu2S thickness of 1.2 µm as CE exhibit the best performance, and the R ct value was 0.57 Ω. The best photovoltaic performance with a PCE of 5.21% (V oc = 533.1 mV, J sc = 18.80 mA cm-2, FF = 52.84%) was achieved under AM 1.5 radiation with an incident power of 100 mW cm-2. This design of a multilayer functionalized CE introduces potential alternatives to the common brass-based CE for long-term QDSCs with high performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...