Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 223, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152499

RESUMEN

The rapid rise in the availability and scale of scRNA-seq data needs scalable methods for integrative analysis. Though many methods for data integration have been developed, few focus on understanding the heterogeneous effects of biological conditions across different cell populations in integrative analysis. Our proposed scalable approach, scParser, models the heterogeneous effects from biological conditions, which unveils the key mechanisms by which gene expression contributes to phenotypes. Notably, the extended scParser pinpoints biological processes in cell subpopulations that contribute to disease pathogenesis. scParser achieves favorable performance in cell clustering compared to state-of-the-art methods and has a broad and diverse applicability.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Humanos , RNA-Seq/métodos , Programas Informáticos
2.
Research (Wash D C) ; 7: 0447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165638

RESUMEN

Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.

3.
MedComm (2020) ; 5(8): e657, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39049966

RESUMEN

As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.

4.
J Adv Res ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38710468

RESUMEN

BACKGROUND: Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW: Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.

5.
Am J Surg Pathol ; 48(5): 511-520, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567813

RESUMEN

The diagnosis of solid pseudopapillary neoplasm of the pancreas (SPN) can be challenging due to potential confusion with other pancreatic neoplasms, particularly pancreatic neuroendocrine tumors (NETs), using current pathological diagnostic markers. We conducted a comprehensive analysis of bulk RNA sequencing data from SPNs, NETs, and normal pancreas, followed by experimental validation. This analysis revealed an increased accumulation of peroxisomes in SPNs. Moreover, we observed significant upregulation of the peroxisome marker ABCD1 in both primary and metastatic SPN samples compared with normal pancreas and NETs. To further investigate the potential utility of ABCD1 as a diagnostic marker for SPN via immunohistochemistry staining, we conducted verification in a large-scale patient cohort with pancreatic tumors, including 127 SPN (111 primary, 16 metastatic samples), 108 NET (98 nonfunctional pancreatic neuroendocrine tumor, NF-NET, and 10 functional pancreatic neuroendocrine tumor, F-NET), 9 acinar cell carcinoma (ACC), 3 pancreatoblastoma (PB), 54 pancreatic ductal adenocarcinoma (PDAC), 20 pancreatic serous cystadenoma (SCA), 19 pancreatic mucinous cystadenoma (MCA), 12 pancreatic ductal intraepithelial neoplasia (PanIN) and 5 intraductal papillary mucinous neoplasm (IPMN) samples. Our results indicate that ABCD1 holds promise as an easily applicable diagnostic marker with exceptional efficacy (AUC=0.999, sensitivity=99.10%, specificity=100%) for differentiating SPN from NET and other pancreatic neoplasms through immunohistochemical staining.


Asunto(s)
Carcinoma Ductal Pancreático , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Páncreas/patología , Carcinoma Ductal Pancreático/patología , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Conductos Pancreáticos/química , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP
6.
PLoS Genet ; 20(3): e1011189, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484017

RESUMEN

RNA sequencing (RNA-Seq) is widely used to capture transcriptome dynamics across tissues, biological entities, and conditions. Currently, few or no methods can handle multiple biological variables (e.g., tissues/ phenotypes) and their interactions simultaneously, while also achieving dimension reduction (DR). We propose INSIDER, a general and flexible statistical framework based on matrix factorization, which is freely available at https://github.com/kai0511/insider. INSIDER decomposes variation from different biological variables and their interactions into a shared low-rank latent space. Particularly, it introduces the elastic net penalty to induce sparsity while considering the grouping effects of genes. It can achieve DR of high-dimensional data (of > = 3 dimensions), as opposed to conventional methods (e.g., PCA/NMF) which generally only handle 2D data (e.g., sample × expression). Besides, it enables computing 'adjusted' expression profiles for specific biological variables while controlling variation from other variables. INSIDER is computationally efficient and accommodates missing data. INSIDER also performed similarly or outperformed a close competing method, SDA, as shown in simulations and can handle complex missing data in RNA-Seq data. Moreover, unlike SDA, it can be used when the data cannot be structured into a tensor. Lastly, we demonstrate its usefulness via real data analysis, including clustering donors for disease subtyping, revealing neuro-development trajectory using the BrainSpan data, and uncovering biological processes contributing to variables of interest (e.g., disease status and tissue) and their interactions.


Asunto(s)
Algoritmos , Transcriptoma , Transcriptoma/genética , Análisis de Secuencia de ARN , Análisis de Datos , ARN/genética , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados
7.
Artículo en Inglés | MEDLINE | ID: mdl-37590102

RESUMEN

Modern high-throughput sequencing technologies have enabled us to profile multiple molecular modalities from the same single cell, providing unprecedented opportunities to assay cellular heterogeneity from multiple biological layers. However, the datasets generated from these technologies tend to have high level of noise and are highly sparse, bringing challenges to data analysis. In this paper, we develop a novel information-theoretic co-clustering-based multi-view learning (scICML) method for multi-omics single-cell data integration. scICML utilizes co-clusterings to aggregate similar features for each view of data and uncover the common clustering pattern for cells. In addition, scICML automatically matches the clusters of the linked features across different data types for considering the biological dependency structure across different types of genomic features. Our experiments on four real-world datasets demonstrate that scICML improves the overall clustering performance and provides biological insights into the data analysis of peripheral blood mononuclear cells.


Asunto(s)
Leucocitos Mononucleares , Multiómica , Genómica/métodos , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139042

RESUMEN

Radiotherapy (RT) is one of three major treatments for malignant tumors, and one of its most common side effects is skin and soft tissue injury. However, the treatment of these remains challenging. Several studies have shown that mesenchymal stem cell (MSC) treatment enhances skin wound healing. In this study, we extracted human dermal fibroblasts (HDFs) and adipose-derived stem cells (ADSCs) from patients and generated an in vitro radiation-induced skin injury model with HDFs to verify the effect of conditioned medium derived from adipose-derived stem cells (ADSC-CM) and extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) on the healing of radiation-induced skin injury. The results showed that collagen synthesis was significantly increased in wounds treated with ADSC-CM or ADSC-EVs compared with the control group, which promoted the expression of collagen-related genes and suppressed the expression of inflammation-related genes. These findings indicated that treatment with ADSC-CM or ADSC-EVs suppressed inflammation and promoted extracellular matrix deposition; treatment with ADSC-EVs also promoted fibroblast proliferation. In conclusion, these results demonstrate the effectiveness of ADSC-CM and ADSC-EVs in the healing of radiation-induced skin injury.


Asunto(s)
Vesículas Extracelulares , Traumatismos por Radiación , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Tejido Adiposo/metabolismo , Células Madre/metabolismo , Traumatismos por Radiación/metabolismo , Inflamación/metabolismo , Colágeno/metabolismo
9.
Nat Commun ; 14(1): 7848, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030617

RESUMEN

The rapid emergence of spatial transcriptomics (ST) technologies is revolutionizing our understanding of tissue spatial architecture and biology. Although current ST methods, whether based on next-generation sequencing (seq-based approaches) or fluorescence in situ hybridization (image-based approaches), offer valuable insights, they face limitations either in cellular resolution or transcriptome-wide profiling. To address these limitations, we present SpatialScope, a unified approach integrating scRNA-seq reference data and ST data using deep generative models. With innovation in model and algorithm designs, SpatialScope not only enhances seq-based ST data to achieve single-cell resolution, but also accurately infers transcriptome-wide expression levels for image-based ST data. We demonstrate SpatialScope's utility through simulation studies and real data analysis from both seq-based and image-based ST approaches. SpatialScope provides spatial characterization of tissue structures at transcriptome-wide single-cell resolution, facilitating downstream analysis, including detecting cellular communication through ligand-receptor interactions, localizing cellular subtypes, and identifying spatially differentially expressed genes.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Hibridación Fluorescente in Situ , Algoritmos , Comunicación Celular , Análisis de la Célula Individual , Análisis de Secuencia de ARN
10.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37862237

RESUMEN

MOTIVATION: Recent rapid developments in spatial transcriptomic techniques at cellular resolution have gained increasing attention. However, the unique characteristics of large-scale cellular resolution spatial transcriptomic datasets, such as the limited number of transcripts captured per spot and the vast number of spots, pose significant challenges to current cell-type deconvolution methods. RESULTS: In this study, we introduce stVAE, a method based on the variational autoencoder framework to deconvolve the cell-type composition of cellular resolution spatial transcriptomic datasets. To assess the performance of stVAE, we apply it to five datasets across three different biological tissues. In the Stereo-seq and Slide-seqV2 datasets of the mouse brain, stVAE accurately reconstructs the laminar structure of the pyramidal cell layers in the cortex, which are mainly organized by the subtypes of telencephalon projecting excitatory neurons. In the Stereo-seq dataset of the E12.5 mouse embryo, stVAE resolves the complex spatial patterns of osteoblast subtypes, which are supported by their marker genes. In Stereo-seq and Pixel-seq datasets of the mouse olfactory bulb, stVAE accurately delineates the spatial distributions of known cell types. In summary, stVAE can accurately identify spatial patterns of cell types and their relative proportions across spots for cellular resolution spatial transcriptomic data. It is instrumental in understanding the heterogeneity of cell populations and their interactions within tissues. AVAILABILITY AND IMPLEMENTATION: stVAE is available in GitHub (https://github.com/lichen2018/stVAE) and Figshare (https://figshare.com/articles/software/stVAE/23254538).


Asunto(s)
Algoritmos , Transcriptoma , Animales , Ratones , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos
11.
Front Genet ; 14: 998504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865385

RESUMEN

Single-cell multiomics technologies, where the transcriptomic and epigenomic profiles are simultaneously measured in the same set of single cells, pose significant challenges for effective integrative analysis. Here, we propose an unsupervised generative model, iPoLNG, for the effective and scalable integration of single-cell multiomics data. iPoLNG reconstructs low-dimensional representations of the cells and features using computationally efficient stochastic variational inference by modelling the discrete counts in single-cell multiomics data with latent factors. The low-dimensional representation of cells enables the identification of distinct cell types, and the feature by factor loading matrices help characterize cell-type specific markers and provide rich biological insights on the functional pathway enrichment analysis. iPoLNG is also able to handle the setting of partial information where certain modality of the cells is missing. Taking advantage of GPU and probabilistic programming, iPoLNG is scalable to large datasets and it takes less than 15 min to implement on datasets with 20,000 cells.

12.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36383176

RESUMEN

MOTIVATION: Technological advances have enabled us to profile single-cell multi-omics data from the same cells, providing us with an unprecedented opportunity to understand the cellular phenotype and links to its genotype. The available protocols and multi-omics datasets [including parallel single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) data profiled from the same cell] are growing increasingly. However, such data are highly sparse and tend to have high level of noise, making data analysis challenging. The methods that integrate the multi-omics data can potentially improve the capacity of revealing the cellular heterogeneity. RESULTS: We propose an adaptively weighted multi-view learning (scAWMV) method for the integrative analysis of parallel scRNA-seq and scATAC-seq data profiled from the same cell. scAWMV considers both the difference in importance across different modalities in multi-omics data and the biological connection of the features in the scRNA-seq and scATAC-seq data. It generates biologically meaningful low-dimensional representations for the transcriptomic and epigenomic profiles via unsupervised learning. Application to four real datasets demonstrates that our framework scAWMV is an efficient method to dissect cellular heterogeneity for single-cell multi-omics data. AVAILABILITY AND IMPLEMENTATION: The software and datasets are available at https://github.com/pengchengzeng/scAWMV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Programas Informáticos , Transcriptoma , Análisis de Secuencia de ARN
13.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36513377

RESUMEN

Single-cell analysis is a valuable approach for dissecting the cellular heterogeneity, and single-cell chromatin accessibility sequencing (scCAS) can profile the epigenetic landscapes for thousands of individual cells. It is challenging to analyze scCAS data, because of its high dimensionality and a higher degree of sparsity compared with scRNA-seq data. Topic modeling in single-cell data analysis can lead to robust identification of the cell types and it can provide insight into the regulatory mechanisms. Reference-guided approach may facilitate the analysis of scCAS data by utilizing the information in existing datasets. We present RefTM (Reference-guided Topic Modeling of single-cell chromatin accessibility data), which not only utilizes the information in existing bulk chromatin accessibility and annotated scCAS data, but also takes advantage of topic models for single-cell data analysis. RefTM simultaneously models: (1) the shared biological variation among reference data and the target scCAS data; (2) the unique biological variation in scCAS data; (3) other variations from known covariates in scCAS data.


Asunto(s)
Cromatina , Cromatina/genética
14.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38171928

RESUMEN

Recent advances in spatial transcriptomics (ST) have enabled comprehensive profiling of gene expression with spatial information in the context of the tissue microenvironment. However, with the improvements in the resolution and scale of ST data, deciphering spatial domains precisely while ensuring efficiency and scalability is still challenging. Here, we develop SGCAST, an efficient auto-encoder framework to identify spatial domains. SGCAST adopts a symmetric graph convolutional auto-encoder to learn aggregated latent embeddings via integrating the gene expression similarity and the proximity of the spatial spots. This framework in SGCAST enables a mini-batch training strategy, which makes SGCAST memory-efficient and scalable to high-resolution spatial transcriptomic data with a large number of spots. SGCAST improves the overall accuracy of spatial domain identification on benchmarking data. We also validated the performance of SGCAST on ST datasets at various scales across multiple platforms. Our study illustrates the superior capacity of SGCAST on analyzing spatial transcriptomic data.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Benchmarking , Aprendizaje
15.
Proc Natl Acad Sci U S A ; 119(28): e2106858119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787050

RESUMEN

Mendelian randomization (MR) is a valuable tool for inferring causal relationships among a wide range of traits using summary statistics from genome-wide association studies (GWASs). Existing summary-level MR methods often rely on strong assumptions, resulting in many false-positive findings. To relax MR assumptions, ongoing research has been primarily focused on accounting for confounding due to pleiotropy. Here, we show that sample structure is another major confounding factor, including population stratification, cryptic relatedness, and sample overlap. We propose a unified MR approach, MR-APSS, which 1) accounts for pleiotropy and sample structure simultaneously by leveraging genome-wide information; and 2) allows the inclusion of more genetic variants with moderate effects as instrument variables (IVs) to improve statistical power without inflating type I errors. We first evaluated MR-APSS using comprehensive simulations and negative controls and then applied MR-APSS to study the causal relationships among a collection of diverse complex traits. The results suggest that MR-APSS can better identify plausible causal relationships with high reliability. In particular, MR-APSS can perform well for highly polygenic traits, where the IV strengths tend to be relatively weak and existing summary-level MR methods for causal inference are vulnerable to confounding effects.


Asunto(s)
Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Análisis de la Aleatorización Mendeliana/métodos , Fenotipo , Reproducibilidad de los Resultados
16.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35561293

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) is being used extensively to measure the mRNA expression of individual cells from deconstructed tissues, organs and even entire organisms to generate cell atlas references, leading to discoveries of novel cell types and deeper insight into biological trajectories. These massive datasets are usually collected from many samples using different scRNA-seq technology platforms, including the popular SMART-Seq2 (SS2) and 10X platforms. Inherent heterogeneities between platforms, tissues and other batch effects make scRNA-seq data difficult to compare and integrate, especially in large-scale cell atlas efforts; yet, accurate integration is essential for gaining deeper insights into cell biology. We present FIRM, a re-scaling algorithm which accounts for the effects of cell type compositions, and achieve accurate integration of scRNA-seq datasets across multiple tissue types, platforms and experimental batches. Compared with existing state-of-the-art integration methods, FIRM provides accurate mixing of shared cell type identities and superior preservation of original structure without overcorrection, generating robust integrated datasets for downstream exploration and analysis. FIRM is also a facile way to transfer cell type labels and annotations from one dataset to another, making it a reliable and versatile tool for scRNA-seq analysis, especially for cell atlas data integration.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , ARN , ARN Mensajero , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
17.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35380624

RESUMEN

The single-cell multiomics technologies provide an unprecedented opportunity to study the cellular heterogeneity from different layers of transcriptional regulation. However, the datasets generated from these technologies tend to have high levels of noise, making data analysis challenging. Here, we propose jointly semi-orthogonal nonnegative matrix factorization (JSNMF), which is a versatile toolkit for the integrative analysis of transcriptomic and epigenomic data profiled from the same cell. JSNMF enables data visualization and clustering of the cells and also facilitates downstream analysis, including the characterization of markers and functional pathway enrichment analysis. The core of JSNMF is an unsupervised method based on JSNMF, where it assumes different latent variables for the two molecular modalities, and integrates the information of transcriptomic and epigenomic data with consensus graph fusion, which better tackles the distinct characteristics and levels of noise across different molecular modalities in single-cell multiomics data. We applied JSNMF to single-cell multiomics datasets from different tissues and different technologies. The results demonstrate the superior performance of JSNMF in clustering and data visualization of the cells. JSNMF also allows joint analysis of multiple single-cell multiomics experiments and single-cell multiomics data with more than two modalities profiled on the same cell. JSNMF also provides rich biological insight on the markers, cell-type-specific region-gene associations and the functions of the identified cell subpopulation.


Asunto(s)
Genómica , Análisis de la Célula Individual , Algoritmos , Análisis por Conglomerados , Genómica/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
18.
Nat Comput Sci ; 2(5): 317-330, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-38177826

RESUMEN

The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human.

19.
Bioinformatics ; 37(21): 3874-3880, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34086847

RESUMEN

MOTIVATION: The advancement in technologies and the growth of available single-cell datasets motivate integrative analysis of multiple single-cell genomic datasets. Integrative analysis of multimodal single-cell datasets combines complementary information offered by single-omic datasets and can offer deeper insights on complex biological process. Clustering methods that identify the unknown cell types are among the first few steps in the analysis of single-cell datasets, and they are important for downstream analysis built upon the identified cell types. RESULTS: We propose scAMACE for the integrative analysis and clustering of single-cell data on chromatin accessibility, gene expression and methylation. We demonstrate that cell types are better identified and characterized through analyzing the three data types jointly. We develop an efficient Expectation-Maximization algorithm to perform statistical inference, and evaluate our methods on both simulation study and real data applications. We also provide the GPU implementation of scAMACE, making it scalable to large datasets. AVAILABILITY AND IMPLEMENTATION: The software and datasets are available at https://github.com/cuhklinlab/scAMACE_py (python implementation) and https://github.com/cuhklinlab/scAMACE (R implementation). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cromatina , Análisis de la Célula Individual , Metilación , Análisis de la Célula Individual/métodos , Programas Informáticos , Expresión Génica
20.
PLoS Comput Biol ; 17(6): e1009064, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34077420

RESUMEN

Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methylation data, usually have different powers in identifying the unknown cell types through clustering. So, methods that integrate multiple datasets can potentially lead to a better clustering performance. Here we propose coupleCoC+ for the integrative analysis of single-cell genomic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-clustering framework. In coupleCoC+, we utilize the information in one dataset, the source data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the linked features in the two datasets for effective knowledge transfer, and it also uses the information of the features in the target data that are unlinked with the source data. In addition, coupleCoC+ matches similar cell types across the source data and the target data. By applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we demonstrate that coupleCoC+ improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has fast convergence and it is computationally efficient. The software is available at https://github.com/cuhklinlab/coupleCoC_plus.


Asunto(s)
Genómica/estadística & datos numéricos , Aprendizaje Automático , Programas Informáticos , Animales , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Células Dendríticas/metabolismo , Humanos , Teoría de la Información , Ratones , ARN Citoplasmático Pequeño/genética , RNA-Seq , Análisis de la Célula Individual/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...