Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609562

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.

2.
J Med Chem ; 66(10): 6811-6835, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37159395

RESUMEN

A series of novel compounds bearing a cyclopropyl linkage were designed, synthesized, and evaluated as programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors. An optimized compound (1S,2S)-A25 showed potent inhibitory activity against the PD-1/PD-L1 interaction (IC50 = 0.029 µM) with a selected binding affinity with PD-L1 (KD = 1.554 × 10-1 µM). Additionally, under the co-culture with H460/Jurkat cells, (1S,2S)-A25 can reduce the survival of H460 cells in a concentration-dependent way. A liver microsomal assay revealed that (1S,2S)-A25 had favorable metabolic stability. Furthermore, (1S,2S)-A25 displayed favorable pharmacokinetic properties (oral bioavailability of 21.58%) and potent antitumor potency in a LLC1 lung carcinoma model without observable side effects. Data from the flow cytometry and enzyme-linked immunosorbent assays demonstrated that (1S,2S)-A25 suppressed the tumor growth by activating the immune microenvironment. Our study suggests that (1S,2S)-A25 is a promising lead compound for the further development of PD-1/PD-L1 inhibitors.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Ligandos , Apoptosis
3.
Cancer Lett ; 564: 216205, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37146936

RESUMEN

Cross-talk between the tumor microenvironment (TME) and cancer cells plays an important role in acquired drug resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). The role of tumor-associated macrophages (TAMs), the major component of the TME, in acquired resistance remains unclear. In this study, M2-like reprogramming of TAMs and reduced phagocytosis by macrophages were observed in gefitinib-resistant lung cancer cells and tumor xenografts. CD47 was upregulated in TKI-resistant lung cancer cells, and M2 macrophage polarization and cancer cell escape from macrophage phagocytosis were enhanced. Culture medium from TKI-resistant cells led to metabolic reprogramming of TAMs. STAT3 was associated with CD47 expression in TKI-resistant lung cancer cells. Genetic and pharmacological inhibition of STAT3 enhanced the phagocytic activity of TAMs and alleviated the acquired resistance to EGFR-TKIs via inhibiting the CD47-SIRPα signaling axis and M2 polarization in the co-culture system. Moreover, STAT3 transcriptionally regulated CD47 expression by binding to consensus DNA response elements in the intron of the CD47 gene. Furthermore, the combination of gefitinib with a STAT3 inhibitor and an anti-CD47 monoclonal antibody alleviated the acquired resistance to gefitinib in vitro and in vivo. Collectively, our study reveals the role of TAM reprogramming and the CD47-SIRPα axis in acquired EGFR-TKI resistance and provides a novel therapeutic strategy to overcome the acquired resistance to EGFR-TKIs in lung cancer.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Humanos , Gefitinib/farmacología , Gefitinib/uso terapéutico , Receptores ErbB/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microambiente Tumoral , Factor de Transcripción STAT3/metabolismo
4.
Cancer Res ; 83(13): 2187-2207, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37061993

RESUMEN

Acquired resistance represents a bottleneck for effective molecular targeted therapy in lung cancer. Metabolic adaptation is a distinct hallmark of human lung cancer that might contribute to acquired resistance. In this study, we discovered a novel mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) mediated by IGF2BP3-dependent cross-talk between epigenetic modifications and metabolic reprogramming through the IGF2BP3-COX6B2 axis. IGF2BP3 was upregulated in patients with TKI-resistant non-small cell lung cancer, and high IGF2BP3 expression correlated with reduced overall survival. Upregulated expression of the RNA binding protein IGF2BP3 in lung cancer cells reduced sensitivity to TKI treatment and exacerbated the development of drug resistance via promoting oxidative phosphorylation (OXPHOS). COX6B2 mRNA bound IGF2BP3, and COX6B2 was required for increased OXPHOS and acquired EGFR-TKI resistance mediated by IGF2BP3. Mechanistically, IGF2BP3 bound to the 3'-untranslated region of COX6B2 in an m6A-dependent manner to increase COX6B2 mRNA stability. Moreover, the IGF2BP3-COX6B2 axis regulated nicotinamide metabolism, which can alter OXPHOS and promote EGFR-TKI acquired resistance. Inhibition of OXPHOS with IACS-010759, a small-molecule inhibitor, resulted in strong growth suppression in vitro and in vivo in a gefitinib-resistant patient-derived xenograft model. Collectively, these findings suggest that metabolic reprogramming by the IGF2BP3-COX6B2 axis plays a critical role in TKI resistance and confers a targetable metabolic vulnerability to overcome acquired resistance to EGFR-TKIs in lung cancer. SIGNIFICANCE: IGF2BP3 stabilizes COX6B2 to increase oxidative phosphorylation and to drive resistance to EGFR inhibitors in lung cancer, which provides a therapeutic strategy to overcome acquired resistance by targeting metabolic transitions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal
5.
J Hematol Oncol ; 16(1): 15, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849939

RESUMEN

The acute myeloid leukemia (AML) patients obtain limited benefits from current immune checkpoint blockades (ICBs), although immunotherapy have achieved encouraging success in numerous cancers. Here, we found that V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint, is highly expressed in primary AML cells and associated with poor prognosis of AML patients. Targeting VISTA by anti-VISTA mAb boosts T cell-mediated cytotoxicity to AML cells. Interestingly, high expression of VISTA is positively associated with hyperactive STAT3 in AML. Further evidence showed that STAT3 functions as a transcriptional regulator to modulate VISTA expression by directly binding to DNA response element of VISTA gene. We further develop a potent and selective STAT3 inhibitor W1046, which significantly suppresses AML proliferation and survival. W1046 remarkably enhances the efficacy of VISTA mAb by activating T cells via inhibition of STAT3 signaling and down-regulation of VISTA. Moreover, combination of W1046 and VISTA mAb achieves a significant anti-AML effect in vitro and in vivo. Overall, our findings confirm that VISTA is a potential target for AML therapy which transcriptionally regulated by STAT3 and provide a promising therapeutic strategy for immunotherapy of AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Agresión , Apoptosis , Regulación hacia Abajo , Inmunoterapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Factor de Transcripción STAT3
6.
Mol Ther ; 31(2): 517-534, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36307991

RESUMEN

N6-methyladenosine (m6A) is the most pervasive RNA modification and is recognized as a novel epigenetic regulation in RNA metabolism. Although the m6A modification involves various physiological processes, its roles in drug resistance in colorectal cancer (CRC) still remain unknown. We analyzed the RNA expression profile of m6A/A (%) with MRM mass spectrometry in human 5-fluorouracil (5-FU)-resistant CRC tissues, and used the m6A RNA immunoprecipitation assay to validate the m6A-regulated target. Our results have shown that the m6A demethylase FTO was up-regulated in human primary and 5-FU-resistant CRC. Depletion of FTO decreased cell growth, colony formation and metastasis in 5-FU-resistant CRC cells in vitro and in vivo. Mechanistically, we identified SIVA1, a critical apoptotic gene, as a key downstream target of the FTO-mediated m6A demethylation. The m6A demethylation of SIVA1 at the CDS region induced its mRNA degradation via a YTHDF2-dependent mechanism. The SIVA1 levels were negatively correlated with the FTO levels in clinical CRC tissues. Notably, inhibition of FTO significantly reduced the tolerance of 5-FU in 5-FU-resistant CRC cells via the FTO-SIVA1 axis, whereas SIVA1-depletion could restore the m6A-dependent 5-FU sensitivity in CRC cells. In summary, our findings demonstrate a critical role of FTO as an m6A demethylase enhancing chemo-resistance in CRC cells, and suggest that FTO inhibition may restore the sensitivity of chemo-resistant CRC cells to 5-FU.


Asunto(s)
Neoplasias Colorrectales , Epigénesis Genética , Humanos , ARN , Fluorouracilo/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
7.
Redox Biol ; 52: 102317, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483272

RESUMEN

Chemotherapy is still one of the principal treatments for gastric cancer, but the clinical application of 5-FU is limited by drug resistance. Here, we demonstrate that ferroptosis triggered by STAT3 inhibition may provide a novel opportunity to explore a new effective therapeutic strategy for gastric cancer and chemotherapy resistance. We find that ferroptosis negative regulation (FNR) signatures are closely correlated with the progression and chemoresistance of gastric cancer. FNR associated genes (GPX4, SLC7A11, and FTH1) and STAT3 are upregulated in 5-FU resistant cells and xenografts. Further evidence demonstrates that STAT3 binds to consensus DNA response elements in the promoters of the FNR associated genes (GPX4, SLC7A11, and FTH1) and regulates their expression, thereby establishing a negative STAT3-ferroptosis regulatory axis in gastric cancer. Genetic inhibition of STAT3 activity triggers ferroptosis through lipid peroxidation and Fe2+ accumulation in gastric cancer cells. We further develop a potent and selective STAT3 inhibitor, W1131, which demonstrates significant anti-tumor effects in gastric cancer cell xenograft model, organoids model, and patient-derived xenografts (PDX) model partly by inducing ferroptosis, thus providing a new candidate compound for advanced gastric cancer. Moreover, targeting the STAT3-ferroptosis circuit promotes ferroptosis and restores sensitivity to chemotherapy. Our finding reveals that STAT3 acts as a key negative regulator of ferroptosis in gastric cancer through a multi-pronged mechanism and provides a new therapeutic strategy for advanced gastric cancer and chemotherapy resistance.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Ferroptosis/genética , Fluorouracilo/farmacología , Humanos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
8.
Hepatology ; 74(3): 1461-1479, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33813748

RESUMEN

BACKGROUND AND AIMS: Hypoxia is a common feature of the tumor microenvironment (TME), which promotes tumor progression, metastasis, and therapeutic drug resistance through a myriad of cell activities in tumor and stroma cells. While targeting hypoxic TME is emerging as a promising strategy for treating solid tumors, preclinical development of this approach is lacking in the study of HCC. APPROACH AND RESULTS: From a genome-wide CRISPR/CRISPR-associated 9 gene knockout screening, we identified aldolase A (ALDOA), a key enzyme in glycolysis and gluconeogenesis, as an essential driver for HCC cell growth under hypoxia. Knockdown of ALDOA in HCC cells leads to lactate depletion and consequently inhibits tumor growth. Supplementation with lactate partly rescues the inhibitory effects mediated by ALDOA knockdown. Upon hypoxia, ALDOA is induced by hypoxia-inducible factor-1α and fat mass and obesity-associated protein-mediated N6 -methyladenosine modification through transcriptional and posttranscriptional regulation, respectively. Analysis of The Cancer Genome Atlas shows that elevated levels of ALDOA are significantly correlated with poor prognosis of patients with HCC. In a screen of Food and Drug Administration-approved drugs based on structured hierarchical virtual platforms, we identified the sulfamonomethoxine derivative compound 5 (cpd-5) as a potential inhibitor to target ALDOA, evidenced by the antitumor activity of cpd-5 in preclinical patient-derived xenograft models of HCC. CONCLUSIONS: Our work identifies ALDOA as an essential driver for HCC cell growth under hypoxia, and we demonstrate that inhibition of ALDOA in the hypoxic TME is a promising therapeutic strategy for treating HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Fructosa-Bifosfato Aldolasa/genética , Neoplasias Hepáticas/genética , Hipoxia Tumoral/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Mutación con Pérdida de Función , Ratones , Trasplante de Neoplasias , Sulfamonometoxina/análogos & derivados , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Gut ; 70(9): 1698-1712, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33219048

RESUMEN

OBJECTIVE: Dysregulated cellular metabolism is a distinct hallmark of human colorectal cancer (CRC). However, metabolic programme rewiring during tumour progression has yet to be fully understood. DESIGN: We analysed altered gene signatures during colorectal tumour progression, and used a complex of molecular and metabolic assays to study the regulation of metabolism in CRC cell lines, human patient-derived xenograft mouse models and tumour organoid models. RESULTS: We identified a novel RNA-binding protein, RALY (also known as hnRNPCL2), that is highly associated with colorectal tumour aggressiveness. RALY acts as a key regulatory component in the Drosha complex, and promotes the post-transcriptional processing of a specific subset of miRNAs (miR-483, miR-676 and miR-877). These miRNAs systematically downregulate the expression of the metabolism-associated genes (ATP5I, ATP5G1, ATP5G3 and CYC1) and thereby reprogramme mitochondrial metabolism in the cancer cell. Analysis of The Cancer Genome Atlas (TCGA) reveals that increased levels of RALY are associated with poor prognosis in the patients with CRC expressing low levels of mitochondrion-associated genes. Mechanistically, induced processing of these miRNAs is facilitated by their N6-methyladenosine switch under reactive oxygen species (ROS) stress. Inhibition of the m6A methylation abolishes the RALY recognition of the terminal loop of the pri-miRNAs. Knockdown of RALY inhibits colorectal tumour growth and progression in vivo and in organoid models. CONCLUSIONS: Collectively, our results reveal a critical metabolism-centric role of RALY in tumour progression, which may lead to cancer therapeutics targeting RALY for treating CRC.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Especies Reactivas de Oxígeno/metabolismo , Ribonucleasa III/metabolismo
10.
EMBO J ; 39(12): e103181, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32368828

RESUMEN

N6-methyladenosine (m6 A) is an abundant nucleotide modification in mRNA, known to regulate mRNA stability, splicing, and translation, but it is unclear whether it is also has a physiological role in the intratumoral microenvironment and cancer drug resistance. Here, we find that METTL3, a primary m6 A methyltransferase, is significantly down-regulated in human sorafenib-resistant hepatocellular carcinoma (HCC). Depletion of METTL3 under hypoxia promotes sorafenib resistance and expression of angiogenesis genes in cultured HCC cells and activates autophagy-associated pathways. Mechanistically, we have identified FOXO3 as a key downstream target of METTL3, with m6 A modification of the FOXO3 mRNA 3'-untranslated region increasing its stability through a YTHDF1-dependent mechanism. Analysis of clinical samples furthermore showed that METTL3 and FOXO3 levels are tightly correlated in HCC patients. In mouse xenograft models, METTL3 depletion significantly enhances sorafenib resistance of HCC by abolishing the identified METTL3-mediated FOXO3 mRNA stabilization, and overexpression of FOXO3 restores m6 A-dependent sorafenib sensitivity. Collectively, our work reveals a critical function for METTL3-mediated m6 A modification in the hypoxic tumor microenvironment and identifies FOXO3 as an important target of m6 A modification in the resistance of HCC to sorafenib therapy.


Asunto(s)
Adenosina/análogos & derivados , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Sorafenib/farmacología , Adenosina/genética , Adenosina/metabolismo , Animales , Autofagia/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proteína Forkhead Box O3/genética , Células HEK293 , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Metilación/efectos de los fármacos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/genética , ARN Mensajero/genética , ARN Neoplásico/genética
11.
Mol Cancer ; 18(1): 46, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922314

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) modification is the most pervasive modification in mRNA, and has been considered as a new layer of epigenetic regulation on mRNA processing, stability and translation. Despite its functional significance in various physiological processes, the role of the m6A modification involved in breast cancer is yet fully understood. METHODS: We used the m6A-RNA immunoprecipitation sequencing to identify the potential targets in breast cancer. To determine the underlying mechanism for the axis of FTO-BNIP3, we performed a series of in vitro and in vivo assays in 3 breast cancer cell lines and 36 primary breast tumor tissues and 12 adjunct tissues. RESULTS: We showed that FTO, a key m6A demethylase, was up-regulated in human breast cancer. High level of FTO was significantly associated with lower survival rates in patients with breast cancer. FTO promoted breast cancer cell proliferation, colony formation and metastasis in vitro and in vivo. We identified BNIP3, a pro-apoptosis gene, as a downstream target of FTO-mediated m6A modification. Epigenetically, FTO mediated m6A demethylation in the 3'UTR of BNIP3 mRNA and induced its degradation via an YTHDF2 independent mechanism. BNIP3 acts as a tumor suppressor and is negatively correlated with FTO expression in clinical breast cancer patients. BNIP3 dramatically alleviated FTO-dependent tumor growth retardation and metastasis. CONCLUSIONS: Our findings demonstrate the functional significance of the m6A modification in breast cancer, and suggest that FTO may serve as a novel potential therapeutic target for breast cancer.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Desmetilación , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica , Pronóstico , Proteínas Proto-Oncogénicas/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Acta Pharm Sin B ; 8(6): 833-843, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30505654

RESUMEN

N 6-Methyladenosine (m6A) modification is the most pervasive modification of human mRNA molecules. It is reversible via regulation of m6A modification methyltransferase, demethylase and proteins that preferentially recognize m6A modification as "writers", "erasers" and "readers", respectively. Altered expression levels of the m6A modification key regulators substantially affect their function, leading to significant phenotype changes in the cell and organism. Recent studies have proved that the m6A modification plays significant roles in regulation of metabolism, stem cell self-renewal, and metastasis in a variety of human cancers. In this review, we describe the potential roles of m6A modification in human cancers and summarize their underlying molecular mechanisms. Moreover, we will highlight potential therapeutic approaches by targeting the key m6A modification regulators for cancer drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...