Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171545, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38458454

RESUMEN

Microplastics (MPs) commonly coexist with heavy metals in the soil environment. MPs can influence the activity of heavy metals, and the specific mechanisms need to be further explored. Here, different contents of polystyrene (PS) MPs were added to soil to explore their effects on the adsorption and desorption characteristics of copper (Cu2+) in soil. The adsorption process was mainly chemical adsorption and belonged to a spontaneous, endothermic reaction. The hydrophobicity of MPs slowed down the adsorption and desorption rates. The main adsorption mechanisms included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+. These findings provide new insights into the effects of MPs on the fate and risk of heavy metals in soil. ENVIRONMENTAL IMPLICATION: The existing literature concerning the effects of microplastics on the adsorption of heavy metals in soil is insufficient. Our investigation unveiled that the main adsorption mechanisms of different soil samples included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+.

2.
Environ Sci Pollut Res Int ; 29(50): 76144-76157, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35666420

RESUMEN

The leaked arsenic-containing chemical warfare agent has caused severe contamination to the surrounding soil and water. In this study, iron oxyhydroxide (FeOOH) with different crystalline phases was used to stabilize arsenic. The results revealed that α/ß- mixed crystalline iron oxyhydroxide (MIX-FeOOH) had better adsorption performance for As(V) and phenylarsonic acid (PAA) in water, with the adsorption capacity 71.4 and 54.7 mg g-1 at 50 mg L-1 equilibrium concentration, respectively. The adsorption mechanism was proved to be inner-sphere complexation, electrostatic interaction, and hydrogen bonding. Meanwhile, the oxygen vacancies on FeOOH could increase the isoelectric point and further promote the adsorption capacity through inner-sphere complexation. In arsenic contaminated soil, when the addition amount of MIX-FeOOH was 5%, the bioavailability of arsenic in As(V) and PAA contaminated soil was significantly reduced after 28 days, and the stabilization rate reached 77.2% and 76.5%, respectively. After 7 days of remediation, 17.1% and 11.9% of the most mobile portions of As(V) and PAA could be converted into poorly mobile portions, respectively. The stabilization mechanism includes inner-sphere complexation, mineral adsorption, and coprecipitation. In summary, this study can provide technical support for the remediation practice of arsenic-containing warfare agent contaminated sites.


Asunto(s)
Arsénico , Sustancias para la Guerra Química , Adsorción , Arsénico/análisis , Arsenicales , Disponibilidad Biológica , Compuestos Férricos , Concentración de Iones de Hidrógeno , Minerales , Oxígeno , Suelo , Agua
3.
Chemosphere ; 292: 133373, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958793

RESUMEN

This study prepared a cetyltrimethylammonium bromide (CTAB) functionalized δ-FeOOH using the coprecipitation method to remove arsenate and phenylarsonic acid in water polluted by phenylarsonic chemical warfare agents. Under neutral conditions, the adsorption capacity for arsenate and phenylarsonic acid was 45.7 and 85.3 mg g-1, respectively. The adsorption process conformed to the pseudo-second-order kinetics and Freundlich isothermal adsorption model, and the adsorption was spontaneous and endothermic. The CTAB-functionalized δ-FeOOH could effectively resist the interference of coexisting anions except for CO32-, SiO32- and PO43-. Furthermore, the adsorption mechanism was proposed by combining the adsorption experimental results, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory analyses. The results showed that the adsorption of arsenate by the CTAB-functionalized δ-FeOOH was mainly through the formation of bidentate-dinuclear inner-sphere complexes and electrostatic interactions. While for phenylarsonic acid, the formation of monodentate-mononuclear inner-sphere complexes on (100) and (110) crystal facets, and the formation of bidentate-dinuclear inner-sphere complexes on the (002) crystal facet, as well as hydrogen bonding, electrostatic interaction, and π-hydrophobic interaction between organic compounds were the primary mechanism. Moreover, the CTAB-functionalized δ-FeOOH could maintain about 60% of the adsorption capacity for the two pollutants after five cycles. Overall, CTAB-functionalized δ-FeOOH has good potential for the remediation of inorganic and organic arsenic-contaminated water bodies.


Asunto(s)
Guerra Química , Contaminantes Químicos del Agua , Adsorción , Arseniatos , Cetrimonio , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 29(14): 20517-20529, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34739669

RESUMEN

The amount of dissolved organic matter (DOM) in a multi-source watershed is important for complete management and assessing the river basin's long-term safety. Based on this, we study the composition, spatiotemporal changes, and primary sources of DOM using the excitation-emission matrix (EEM) and parallel factor analysis (PARAFAC). The relationship between DOM composition and water quality was also discussed. It was found that the DOM in the North Canal River watershed was composed of two similar humic acid-like components (230, 335/400 nm and 260, 360/450 nm) and a tryptophan-like component (280/290-350 nm). The intensity of DOM shows obvious seasonal spatiotemporal variations. In terms of time, the relative concentration of DOM in winter is significantly higher than that in other seasons due to the influence of water volume, temperature, and photochemical degradation factors. As for the aspect of space, under the combined effect of land use and multiple sources of pollution, the relative concentration of tryptophan-like in the mainstream was significantly higher than tributaries, while the relative concentration of humic-like components in the tributaries was higher than that in the mainstream. The chief sources of DOM in the North Canal River watershed include human-derived point sources and agricultural non-point sources in the main channel, as well as terrestrial and microbiological sources in the tributaries. Moreover, the composition of DOM is significantly related to water quality indicators, especially nitrogen and phosphorus, which shows that DOM can have an indicative impact on the trophic status in the North Canal River. The findings of this study could have a predictive effect and provide a scientific foundation for water quality monitoring and pollution control in the North Canal River watershed.


Asunto(s)
Materia Orgánica Disuelta , Ríos , China , Análisis Factorial , Humanos , Sustancias Húmicas/análisis , Fósforo/análisis , Ríos/química , Espectrometría de Fluorescencia , Calidad del Agua
5.
Environ Sci Pollut Res Int ; 29(14): 20357-20369, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34735704

RESUMEN

The Beiyun river flows through a hot spot region of Beijing-Tianjin-Hebei in China that serves a majority of occupants. However, the region experiences severe nitrate pollution, posing a threat to human health due to inadequate self-purification capacity. In that context, there is an urgent need to assess nitrate levels in this region. Herein, we used δ15N-NO3, δ18O-NO3 isotopes analysis, and stable isotope analysis model to evaluate the nitrate source apportionment in the Beiyun river. A meta-analysis was then used to compare the potential similarity of nitrate sources among the Beiyun riverine watershed and other watersheds. Results of nitrate source apportionment revealed that nitrate originated from the manure and sewage (contribution rate: 89.6%), soil nitrogen (5.9%), and nitrogen fertilizer (3.9%) in the wet season. While in the dry season, nitrate mainly originated from manure and sewage (91.6%). Furthermore, different land-use types exhibited distinct nitrate compositions. Nitrate in urban and suburban areas mostly was traced from manure and sewage (90.5% and 78.8%, respectively). Notably, the different nitrate contribution in the rural-urban fringe and plant-covered areas were manure and sewage (44.3% and 32.8%), soil nitrogen (26.9% and 35.7%), nitrogen fertilizer (23.5% and 29.4%), and atmospheric deposition (5.3% and 2.0%). Through a meta-analysis, we found nitrogen fertilizer, soil nitrogen, and manure and sewage as the main nitrate sources in the Beiyun riverine watershed or the other similar complexed watersheds in the temperate regions. Thus, this study provides a scientific basis for nitrate source apportionment and nitrate pollution preventive management in watersheds with complexed land-use types in temperate regions.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Humanos , Nitratos/análisis , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Pollut ; 267: 115496, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254727

RESUMEN

Microplastics have attracted much attention in recent years because they are able to interact with other pollutants including pesticides, with implications for the potential risks to biota. However, the sorption behavior of pesticides on microplastics, especially on biodegradable microplastics which are promising alternatives to conventional polymers, has been insufficiently studied. In this study, triadimefon and difenoconazole were selected as model triazole fungicides, and their sorption behavior on a typical biodegradable microplastics (PBS: polybutylene succinate) and two conventional polyethylene (PE) and polyvinyl chloride (PVC) microplastics was investigated with batch experiments in an aqueous solution. PBS presented the highest sorption capacity for triadimefon (104.2 ± 4.8 µg g-1) and difenoconazole (192.8 ± 2.3 µg g-1), which was 1.8- and 1.3-fold that on PE and 4.4- and 7.4-fold that of PVC, respectively. The results of sorption kinetic and isotherm modeling were better fit by a pseudo-second order model and linear model, respectively. More importantly, the effects of environmental factors (pH, salinity and dissolved organic matter) on the sorption behavior were investigated. Fungicide sorption on PBS was generally not affected by salinity, pH or dissolved organic matter. However, in contrast, salinity and dissolved organic matter both significantly decreased sorption on PE and PVC. The results showed that not only the sorption capacities of biodegradable microplastics but also their responses to environmental factors are quite different from those of conventional microplastics. This finding highlights the importance of the role played by biodegradable microplastics in the accumulation and transportation of organic pollutants.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Adsorción , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
7.
Sci Rep ; 10(1): 5297, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210249

RESUMEN

Removal of hexavalent chromium [Cr(VI)] from soils and water has been widely studied for its high toxicity. Although leaching method is viewed as an effective approach to eliminate Cr(VI) and some studies attempted to enhance leaching performance via the external electric field, there is little knowledge about the influential factor in electro-leaching system on Cr(VI) removal performance. In this study, an electro-leaching technology was developed for removing Cr(VI) from groundwater aquifer to comprehensively discuss the correlation between the operational parameters and Cr(VI) removal efficiency. When the applied voltage was 20 V and the initial Cr(VI) concentration was 40 mg/kg, Cr(VI) removal efficiency achieved 99.9% in 120 min in the electro-leaching system, 15% higher than the system without the electric field. Cr(VI) removal efficiencies increased with the voltage demonstrating the significant enhancement of the electro-leaching method in removing Cr(VI). When Cr(VI) concentration climbed to 120 mg/kg, Cr(VI) removal efficiency remained above 85%. The effects of different voltages, Cr(VI) concentrations, pollutant distribution and salt content of leaching solution on the leaching effect were also investigated. Meanwhile, the relationship between the current intensity change and the amount of removed Cr(VI) during the electro-leaching process was first investigated, and the relevant model was fitted. There is a quadratic linear correlation between the amount of current change and the amount of removed Cr(VI). This novel electro-enhanced leaching method can effectively remove Cr(VI) from contaminated groundwater aquifer by enhancing the migration of charged contaminant ions during the leaching process, and it is worthy of further study of heavy metal remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...