Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Microbiol ; 2: 16197, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27798598

RESUMEN

Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule-one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases.


Asunto(s)
Lipopéptidos/aislamiento & purificación , Metaboloma , Péptidos Cíclicos/aislamiento & purificación , Pseudomonas/química , Vías Biosintéticas , Espectrometría de Masas , Pseudomonas/genética , Triticum/microbiología
3.
Nat Struct Mol Biol ; 19(7): 677-84, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22683997

RESUMEN

Leucyl-tRNA synthetase (LeuRS) produces error-free leucyl-tRNA(Leu) by coordinating translocation of the 3' end of (mis-)charged tRNAs from its synthetic site to a separate proofreading site for editing. Here we report cocrystal structures of the Escherichia coli LeuRS-tRNA(Leu) complex in the aminoacylation or editing conformations, showing that translocation involves correlated rotations of four flexibly linked LeuRS domains. This pivots the tRNA to guide its charged 3' end from the closed aminoacylation state to the editing site. The editing domain unexpectedly stabilizes the tRNA during aminoacylation, and a large rotation of the leucine-specific domain positions the conserved KMSKS loop to bind the 3' end of the tRNA, promoting catalysis. Our results give new insight into the structural dynamics of a molecular machine that is essential for accurate protein synthesis.


Asunto(s)
Escherichia coli/enzimología , Leucina-ARNt Ligasa/metabolismo , Acilación , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Leucina-ARNt Ligasa/química , Modelos Moleculares , Conformación Proteica , Edición de ARN
4.
FEBS Lett ; 585(19): 2986-91, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21856301

RESUMEN

The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.


Asunto(s)
Compuestos de Boro/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Farmacorresistencia Fúngica/genética , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Mutación , Caperuzas de ARN/química , Edición de ARN , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacología , Compuestos de Boro/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Análisis Mutacional de ADN , Leucina-ARNt Ligasa/antagonistas & inhibidores , Leucina-ARNt Ligasa/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Electricidad Estática
5.
Mol Cell ; 11(4): 951-63, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12718881

RESUMEN

The aminoacyl-tRNA synthetases link tRNAs with their cognate amino acid. In some cases, their fidelity relies on hydrolytic editing that destroys incorrectly activated amino acids or mischarged tRNAs. We present structures of leucyl-tRNA synthetase complexed with analogs of the distinct pre- and posttransfer editing substrates. The editing active site binds the two different substrates using a single amino acid discriminatory pocket while preserving the same mode of adenine recognition. This suggests a similar mechanism of hydrolysis for both editing substrates that depends on a key, completely conserved aspartic acid, which interacts with the alpha-amino group of the noncognate amino acid and positions both substrates for hydrolysis. Our results demonstrate the economy by which a single active site accommodates two distinct substrates in a proofreading process critical to the fidelity of protein synthesis.


Asunto(s)
Aminoácidos/metabolismo , Leucina-ARNt Ligasa/metabolismo , Biosíntesis de Proteínas/genética , Edición de ARN/genética , ARN de Transferencia/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Aminoácidos/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Leucina-ARNt Ligasa/genética , Sustancias Macromoleculares , Conformación Molecular , Proteínas/genética , ARN de Transferencia/genética
6.
EMBO J ; 21(24): 6874-81, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12486008

RESUMEN

Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS. Three-hybrid analysis determined that these CP1-containing LeuRS fragments, ranging from 214 to 375 amino acids, bound to the bI4 intron. In each case, interactions with only the LeuRS protein fragment specifically stimulated bI4 intron splicing activity. Substitution of a homologous CP1 domain from isoleucyl-tRNA synthetase or mutation within the LeuRS CP1 region of the smallest protein fragment abolished RNA binding and splicing activity. The CP1 domain is best known for its amino acid editing activity. However, these results suggest that elements within the LeuRS CP1 domain also play a novel role, independent of the full-length tRNA synthetase, in binding the bI4 group I intron and facilitating its self-splicing activity.


Asunto(s)
Intrones , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Empalme del ARN , Western Blotting , Escherichia coli/metabolismo , Eliminación de Gen , Mitocondrias/metabolismo , Modelos Genéticos , Mutación , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...