Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108110, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37860691

RESUMEN

In neuropathic pain, recent evidence has highlighted a sex-dependent role of the P2X4 receptor in spinal microglia in the development of tactile allodynia following nerve injury. Here, using internalization-defective P2X4mCherryIN knockin mice (P2X4KI), we demonstrate that increased cell surface expression of P2X4 induces hypersensitivity to mechanical stimulations and hyperexcitability in spinal cord neurons of both male and female naive mice. During neuropathy, both wild-type (WT) and P2X4KI mice of both sexes develop tactile allodynia accompanied by spinal neuron hyperexcitability. These responses are selectively associated with P2X4, as they are absent in global P2X4KO or myeloid-specific P2X4KO mice. We show that P2X4 is de novo expressed in reactive microglia in neuropathic WT and P2X4KI mice of both sexes and that tactile allodynia is relieved by pharmacological blockade of P2X4 or TrkB. These results show that the upregulation of P2X4 in microglia is crucial for neuropathic pain, regardless of sex.

2.
Cell Mol Life Sci ; 80(5): 138, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145189

RESUMEN

Numerous evidences support that microglia contributes to the progression of Alzheimer's disease. P2X4 receptors are ATP-gated channels with high calcium permeability, which are de novo expressed in a subset of reactive microglia associated with various pathological contexts, contributing to microglial functions. P2X4 receptors are mainly localized in lysosomes and trafficking to the plasma membrane is tightly regulated. Here, we investigated the role of P2X4 in the context of Alzheimer's disease (AD). Using proteomics, we identified Apolipoprotein E (ApoE) as a specific P2X4 interacting protein. We found that P2X4 regulates lysosomal cathepsin B (CatB) activity promoting ApoE degradation; P2rX4 deletion results in higher amounts of intracellular and secreted ApoE in both bone-marrow-derived macrophage (BMDM) and microglia from APPswe/PSEN1dE9 brain. In both human AD brain and APP/PS1 mice, P2X4 and ApoE are almost exclusively expressed in plaque-associated microglia. In 12-month-old APP/PS1 mice, genetic deletion of P2rX4 reverses topographical and spatial memory impairment and reduces amount of soluble small aggregates of Aß1-42 peptide, while no obvious alteration of plaque-associated microglia characteristics is observed. Our results support that microglial P2X4 promotes lysosomal ApoE degradation, indirectly altering Aß peptide clearance, which in turn might promotes synaptic dysfunctions and cognitive deficits. Our findings uncover a specific interplay between purinergic signaling, microglial ApoE, soluble Aß (sAß) species and cognitive deficits associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptores Purinérgicos P2X4/metabolismo
3.
J Neuroinflammation ; 19(1): 234, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153535

RESUMEN

BACKGROUND: Research in recent years firmly established that microglial cells play an important role in the pathogenesis of Alzheimer's disease (AD). In parallel, a series of studies showed that, under both homeostatic and pathological conditions, microglia are a heterogeneous cell population. In AD, amyloid-ß (Aß) plaque-associated microglia (PAM) display a clearly distinct phenotype compared to plaque-distant microglia (PCM), suggesting that these two microglia subtypes likely differently contribute to disease progression. So far, molecular characterization of PAM was performed indirectly using single cell RNA sequencing (scRNA-seq) approaches or based on markers that are supposedly up-regulated in this microglia subpopulation. METHODS: In this study based on a well-characterized AD mouse model, we combined cell-specific laser capture microdissection and RNA-seq analysis to i) identify, without preconceived notions of the molecular and/or functional changes that would affect these cells, the genes and gene networks that are dysregulated in PAM or PCM at three critical stages of the disease, and ii) to investigate the potential contribution of both plaque-associated and plaque-distant microglia. RESULTS: First, we established that our approach allows selective isolation of microglia, while preserving spatial information and preventing transcriptome changes induced by classical purification approaches. Then, we identified, in PAM and PCM subpopulations, networks of co-deregulated genes and analyzed their potential functional roles in AD. Finally, we investigated the dynamics of microglia transcriptomic remodeling at early, intermediate and late stages of the disease and validated select findings in postmortem human AD brain. CONCLUSIONS: Our comprehensive study provides useful transcriptomic information regarding the respective contribution of PAM and PCM across the Aß pathology progression. It highlights specific pathways that would require further study to decipher their roles across disease progression. It demonstrates that the proximity of microglia to Aß-plaques dramatically alters the microglial transcriptome and reveals that these changes can have both positive and negative impacts on the surrounding cells. These opposing effects may be driven by local microglia heterogeneity also demonstrated by this study. Our approach leads to molecularly define the less well studied plaque-distant microglia. We show that plaque-distant microglia are not bystanders of the disease, although the transcriptomic changes are far less striking compared to what is observed in plaque-associated microglia. In particular, our results suggest they may be involved in Aß oligomer detection and in Aß-plaque initiation, with increased contribution as the disease progresses.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/patología , Transcriptoma
4.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33380526

RESUMEN

ATP is an extracellular signaling molecule involved in numerous physiological and pathologic processes. However, in situ characterization of the spatiotemporal dynamic of extracellular ATP is still challenging because of the lack of sensor with appropriate specificity, sensitivity, and kinetics. Here, we report the development of biosensors based on the fusion of cation permeable ATP receptors (P2X) to genetically encoded calcium sensors [genetically encoded calcium indicator (GECI)]. By combining the features of P2X receptors with the high signal-to-noise ratio of GECIs, we generated ultrasensitive green and red fluorescent sniffers that detect nanomolar ATP concentrations in situ and also enable the tracking of P2X receptor activity. We provide the proof of concept that these sensors can dynamically track ATP release evoked by depolarization in mouse neurons or by extracellular hypotonicity. Targeting these P2X-based biosensors to diverse cell types should advance our knowledge of extracellular ATP dynamics in vivo.


Asunto(s)
Receptores Purinérgicos P2 , Adenosina Trifosfato , Animales , Calcio , Ratones , Neuronas , Receptores Purinérgicos P2/genética , Transducción de Señal
5.
Brain Behav Immun ; 91: 404-417, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190798

RESUMEN

Microglia, the resident immune cells of the brain, have recently emerged as key players in Alzheimer Disease (AD) pathogenesis, but their roles in AD remain largely elusive and require further investigation. Microglia functions are readily altered when isolated from their brain environment, and microglia reporter mice thus represent valuable tools to study the contribution of these cells to neurodegenerative diseases such as AD. The CX3CR1+/eGFP mice is one of the most popular microglia reporter mice, and has been used in numerous studies to investigate in vivo microglial functions, including in the context of AD research. However, until now, the impact of CX3CR1 haplodeficiency on the typical features of Alzheimer Disease has not been studied in depth. To fill this gap, we generated APPswe/PSEN1dE9:CX3CR1+/eGFP mice and analyzed these mice for Alzheimer's like pathology and neuroinflammation hallmarks. More specifically, using robust multifactorial statistical and multivariate analyses, we investigated the impact of CX3CR1 deficiency in both males and females, at three typical stages of the pathology progression: at early stage when Amyloid-ß (Aß) deposition just starts, at intermediate stage during Aß accumulation phase and at more advanced stages when Aß plaque number stabilizes. We found that CX3CR1 haplodeficiency had little impact on the progression of the pathology in the APPswe/PSEN1dE9 model and demonstrated that the APPswe/PSEN1dE9:CX3CR1+/eGFP line is a relevant and useful model to study the role of microglia in Alzheimer Disease. In addition, although Aß plaques density is higher in females compared to age-matched males, we show that their glial reaction, inflammation status and memory deficits are not different.


Asunto(s)
Enfermedad de Alzheimer , Receptor 1 de Quimiocinas CX3C , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide
6.
Artículo en Inglés | MEDLINE | ID: mdl-32425766

RESUMEN

Neuronal hippocampal cultures are simple and valuable models for studying neuronal function. While embryonic cultures are widely used for different applications, mouse postnatal cultures are still challenging, lack reproducibility and/or exhibit inappropriate neuronal activity. Yet, postnatal cultures have major advantages such as allowing genotyping of pups before culture and reducing the number of experimental animals. Herein we describe a simple and fast protocol for culturing and genetically manipulating hippocampal neurons from P0 to P3 mice. This protocol provides reproducible cultures exhibiting a consistent neuronal development, normal excitatory over inhibitory neuronal ratio and a physiological neuronal activity. We also describe simple and efficient procedures for genetic manipulation of neurons using transfection reagent or lentiviral particles. Overall, this method provides a detailed and validated protocol allowing to explore cellular mechanisms and neuronal activity in postnatal hippocampal neurons in culture.

7.
Glia ; 68(9): 1692-1728, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31958188

RESUMEN

Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.


Asunto(s)
Astrocitos , Neuroglía , Humanos , Microglía , Neuronas , Oligodendroglía
8.
Sci Rep ; 8(1): 964, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343707

RESUMEN

Chronic inflammatory and neuropathic pains are major public health concerns. Potential therapeutic targets include the ATP-gated purinergic receptors (P2RX) that contribute to these pathological types of pain in several different cell types. The purinergic receptors P2RX2 and P2RX3 are expressed by a specific subset of dorsal root ganglion neurons and directly shape pain processing by primary afferents. In contrast the P2RX4 and P2RX7 are mostly expressed in myeloid cells, where activation of these receptors triggers the release of various pro-inflammatory molecules. Here, we demonstrate that P2RX4 also controls calcium influx in mouse dorsal root ganglion neurons. P2RX4 is up-regulated in pain-processing neurons during long lasting peripheral inflammation and it co-localizes with Brain-Derived Neurotrophic Factor (BDNF). In the dorsal horn of the spinal cord, BDNF-dependent signaling pathways, phosphorylation of Erk1/2 and of the GluN1 subunit as well as the down regulation of the co-transporter KCC2, which are triggered by peripheral inflammation are impaired in P2RX4-deficient mice. Our results suggest that P2RX4, expressed by sensory neurons, controls neuronal BDNF release that contributes to hyper-excitability during chronic inflammatory pain and establish P2RX4 in sensory neurons as a new potential therapeutic target to treat hyperexcitability during chronic inflammatory pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/fisiología , Animales , Femenino , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Regulación hacia Arriba/fisiología
9.
PLoS One ; 11(3): e0150793, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963100

RESUMEN

Kainic acid (KA) is routinely used to elicit status epilepticus (SE) and epileptogenesis. Among the available KA administration protocols, intranasal instillation (IN) remains understudied. Dosages of KA were instilled IN in mice. Racine Scale and Video-EEG were used to assess and quantify SE onset. Time spent in SE and spike activity was quantified for each animal and confirmed by power spectrum analysis. Immunohistochemistry and qPCR were performed to define brain inflammation occurring after SE, including activated microglial phenotypes. Long term video-EEG recording was also performed. Titration of IN KA showed that a dose of 30 mg/kg was associated with low mortality while eliciting SE. IN KA provoked at least one behavioral and electrographic SE in the majority of the mice (>90%). Behavioral and EEG SE were accompanied by a rapid and persistent microglial-astrocytic cell activation and hippocampal neurodegeneration. Specifically, microglial modifications involved both pro- (M1) and anti-inflammatory (M2) genes. Our initial long-term video-EEG exploration conducted using a small cohort of mice indicated the appearance of spike activity or SE. Our study demonstrated that induction of SE is attainable using IN KA in mice. Typical pro-inflammatory brain changes were observed in this model after SE, supporting disease pathophysiology. Our results are in favor of the further development of IN KA as a means to study seizure disorders. A possibility for tailoring this model to drug testing or to study mechanisms of disease is offered.


Asunto(s)
Conducta Animal/efectos de los fármacos , Electroencefalografía , Ácido Kaínico/farmacología , Estado Epiléptico/fisiopatología , Administración Intranasal , Animales , Astrocitos/metabolismo , Astrocitos/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Estado Epiléptico/patología
10.
Diabetologia ; 57(3): 532-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24317793

RESUMEN

AIMS/HYPOTHESIS: Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of ß-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. METHODS: ß-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. RESULTS: Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. CONCLUSIONS/INTERPRETATION: ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.


Asunto(s)
Arrestinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Páncreas/metabolismo , Animales , Western Blotting , Dieta Alta en Grasa , Secreción de Insulina , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Insulina , Transducción de Señal , Arrestina beta 2 , beta-Arrestinas
11.
J Biol Chem ; 285(3): 1989-2002, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19915011

RESUMEN

Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.


Asunto(s)
Apoptosis/efectos de los fármacos , Arrestinas/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Células Secretoras de Insulina/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteína Letal Asociada a bcl/química , beta-Arrestina 1 , beta-Arrestinas
12.
Diabetes ; 58(5): 1105-15, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19223597

RESUMEN

OBJECTIVE: In type 2 diabetes, chronic hyperglycemia is detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The transcription factor cAMP-responsive element-binding protein (CREB) is crucial for beta-cell survival and function. We investigated whether prolonged exposure of beta-cells to high glucose affects the functional integrity of CREB. RESEARCH DESIGN AND METHODS: INS-1E cells and rat and human islets were used. Gene expression was analyzed by RT-PCR and Western blotting. Apoptosis was detected by cleaved caspase-3 emergence, DNA fragmentation, and electron microscopy. RESULTS: Chronic exposure of INS-1E cells and rat and human islets to high glucose resulted in decreased CREB protein expression, phosphorylation, and transcriptional activity associated with apoptosis and impaired beta-cell function. High-glucose treatment increased CREB polyubiquitination, while treatment of INS-1E cells with the proteasome inhibitor MG-132 prevented the decrease in CREB content. The emergence of apoptosis in INS-1E cells with decreased CREB protein expression knocked down by small interfering RNA suggested that loss of CREB protein content induced by high glucose contributes to beta-cell apoptosis. Loading INS-1E cells or human islets with a cell-permeable peptide mimicking the proteasomal targeting sequence of CREB blocked CREB degradation and protected INS-1E cells and human islets from apoptosis induced by high glucose. The insulin secretion in response to glucose and the insulin content were preserved in human islets exposed to high glucose and loaded with the peptide. CONCLUSIONS: These studies demonstrate that the CREB degradation by the ubiquitin-proteasome pathway contributes to beta-cell dysfunction and death upon glucotoxicity and provide new insight into the cellular mechanisms of glucotoxicity.


Asunto(s)
Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Glucosa/toxicidad , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Muerte Encefálica , Proteína de Unión a CREB/efectos de los fármacos , Proteína de Unión a CREB/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modulador del Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Fragmentación del ADN , Diabetes Mellitus Experimental/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Biol Chem ; 284(7): 4332-42, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19074139

RESUMEN

In pancreatic beta-cells, the pituitary adenylate cyclase-activating polypeptide (PACAP) exerts a potent insulin secretory effect via PAC(1) and VPAC receptors (Rs) through the Galpha(s)/cAMP/protein kinase A pathway. Here, we investigated the mechanisms linking PAC(1)R to ERK1/2 activation in INS-1E beta-cells and pancreatic islets. PACAP caused a transient (5 min) increase in ERK1/2 phosphorylation via PAC(1)Rs and promoted nuclear translocation of a fraction of cytosolic p-ERK1/2. Both protein kinase A- and Src-dependent pathways mediated this transient ERK1/2 activation. Moreover, PACAP potentiated glucose-induced long-lasting ERK1/2 activation. Blocking Ca(2+) influx abolished glucose-induced ERK1/2 activation and PACAP potentiating effect. Glucose stimulation during KCl depolarization showed that, in addition to the triggering signal (rise in cytosolic [Ca(2+)]), the amplifying pathway was also involved in glucose-induced sustained ERK1/2 activation and was required for PACAP potentiation. The finding that at 30 min glucose-induced p-ERK1/2 was detected in both cytosol and nucleus while the potentiating effect of PACAP was only observed in the cytosol, suggested the involvement of the scaffold protein beta-arrestin. Indeed, beta-arrestin 1 (beta-arr1) depletion (in beta-arr1 knockout mouse islets or in INS-1E cells by siRNA) completely abolished PACAP potentiation of long-lasting ERK1/2 activation by glucose. Finally, PACAP potentiated glucose-induced CREB transcriptional activity and IRS-2 mRNA expression mainly via the ERK1/2 signaling pathway, and likewise, beta-arr1 depletion reduced the PACAP potentiating effect on IRS-2 expression. These results establish for the first time that PACAP potentiates glucose-induced long-lasting ERK1/2 activation via a beta-arr1-dependent pathway and thus provide new insights concerning the mechanisms of PACAP and glucose actions in pancreatic beta-cells.


Asunto(s)
Arrestinas/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Edulcorantes/farmacología , Animales , Arrestinas/genética , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/biosíntesis , Proteínas Sustrato del Receptor de Insulina/genética , Células Secretoras de Insulina/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Edulcorantes/metabolismo , Factores de Tiempo , beta-Arrestina 1 , beta-Arrestinas
14.
Pharm Res ; 23(11): 2665-71, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17048117

RESUMEN

PURPOSE: A series of C2-substituted ATP analogues was previously shown to have potent insulin-secreting properties, yet with poor tissue-selectivity for the pancreatic beta-cell. The present study was designed to evaluate the binding profile on beta-cell membranes and the effects on insulin release and pancreatic vascular resistance of a second generation of P2Y(1) receptor agonists, based on C2-substitution of the adenosine 5'-O-(1-boranotriphosphate) scaffold. MATERIALS AND METHODS: Functional experiments were performed in the rat isolated pancreas model; binding studies with ATP-alpha-[(35)S] were performed in membrane homogenates from the rat insulinoma INS-1 cell line. The diastereoisomers of the compounds are designated by A and B. RESULTS: Under 8.3 mmol l(-1) glucose, 2-methylthio-ATP-alpha-B, A isomer, induced a biphasic and concentration dependent insulin response; its maximal efficacy reaches ninefold the baseline secretion and its EC(50) is 28.1 nmol l(-1). No significant effect of this isomer was observed on vascular resistance, whereas the B isomer, which was a less potent insulin secretagogue, consistently induced a transient vasoconstriction. Interestingly, the insulin response induced by 2-methylthio-ATP-alpha-B, A isomer, was clearly glucose-dependent. This drug competes with ATP-alpha-[(35)S] binding in a complex two sites interaction model, with a K(0.5) value of 17.7 nmol l(-1). 2-Chloro-ATP-alpha-B had a similar insulin-secreting profile as 2-methylthio-ATP-alpha-B, with a lower tissue-selectivity. The non-substituted ATP-alpha-B analog, A isomer, was less potent than the C2-substituted derivatives (A isomers) and had a vasorelaxant effect. CONCLUSIONS: We conclude that 2-methylthio-ATP-alpha-B, A isomer, is a potent and tissue-selective P2Y receptor agonist with high efficacy. Its insulin-releasing action is glucose-dependent, which gives interest to this compound as a drug candidate for treating type 2 diabetes.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Boranos/farmacología , Insulina/metabolismo , Agonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P2/fisiología , Adenosina Trifosfato/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Secreción de Insulina , Masculino , Ratas , Ratas Wistar , Receptores Purinérgicos P2Y1 , Tionucleótidos/metabolismo , Resistencia Vascular/efectos de los fármacos
15.
J Agric Food Chem ; 53(1): 151-7, 2005 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-15631522

RESUMEN

Insulin resistance and oxidative stress act synergistically in the development of cardiovascular complications. The present study compared the efficacy of three polyphenolic extracts in their capacity to prevent hypertension, cardiac hypertrophy, increased production of reactive oxygen species (ROS) by the aorta or the heart, and increased expression of cardiac NAD(P)H oxidase in a model of insulin resistance. Rats were fed a 60%-enriched fructose food and were treated once a day (gavage) for 6 weeks with 10 mL/kg of water only (F group) or the same amount of solution containing a red grape skin polyphenolic extract enriched in anthocyanins (ANT), a grape seed extract enriched in procyanidins and rich in galloylated procyanidins (PRO), or the commercial preparation Vitaflavan (VIT), rich in catechin oligomers. All treatments were administered at the same dose of 21 mg/kg of polyphenols. Our data indicate that (a) the ANT treatment prevented hypertension, cardiac hypertrophy, and production of ROS, (b) the PRO treatment prevented insulin resistance, hypertriglyceridemia, and overproduction of ROS but had only minor effects on hypertension or hypertrophy, while (c) Vitaflavan prevented hypertension, cardiac hypertrophy, and overproduction of ROS. All polyphenolic treatments prevented the increased expression of the p91phox NADPH oxidase subunit. In summary, our study suggest that (a) the pathogeny of cardiac hypertrophy in the fructose-fed rat disease involves both hypertension and hyperproduction of ROS, (b) polyphenolic extracts enriched in different types of polyphenols possess differential effects on insulin resistance, hypertension, and cardiac hypertrophy, and (c) polyphenols modulate the expression of NAD(P)H oxidase.


Asunto(s)
Cardiomegalia/prevención & control , Flavonoides/administración & dosificación , Hipertensión/prevención & control , Resistencia a la Insulina , NADPH Oxidasas/metabolismo , Fenoles/administración & dosificación , Animales , Fructosa/administración & dosificación , Frutas/química , Ventrículos Cardíacos/enzimología , NADPH Oxidasas/análisis , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Polifenoles , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Semillas/química , Vitis/química
16.
J Agric Food Chem ; 52(18): 5593-7, 2004 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-15373398

RESUMEN

The effects of a red wine polyphenolic extract (RWPE), ethanol, or both combined were evaluated in insulin resistant rats. Rats were fed for 6 weeks with fructose (60%)-enriched food and force-fed with (a) water only (F group), (b) aqueous solution of RWPE (100 mg/kg, FP group), (c) 10% (v/v) mixture of ethanol and water (FE group), or (d) solution containing the same amount of the RWPE and ethanol (FPE group). Animals fed a standard chow (C group) were used for comparison purpose. After 6 weeks, blood pressure was higher in F (130.0 x b1 1.7 mm Hg) than in C animals (109.6 x b1 0.9 mm Hg) and similar to the C group in all other fructose-fed treatment groups. Relative heart weight was higher in F (3.10 x b1 0.05) than in C (2.78 x b1 0.07) and significantly lower in FP (2.92 x b1 0.04) and FPE (2.87 x b1 0.08 mg/g) than in F animals. Left ventricle and aorta productions of reactive oxygen species (O2*-) were higher in F than in C groups and lowered by the RWPE but not by the ethanol treatment. Ethanol but not the RWPE treatment reduced the degree of insulin resistance in the fructose-fed rats. In summary, our study showed that polyphenols are able to prevent cardiac hypertrophy and production of reactive oxygen species in the insulin resistant fructose-fed rat.


Asunto(s)
Cardiomegalia/prevención & control , Etanol/administración & dosificación , Flavonoides/administración & dosificación , Hipertensión/prevención & control , Resistencia a la Insulina , Fenoles/administración & dosificación , Vino/análisis , Animales , Aniones , Carbohidratos de la Dieta/administración & dosificación , Fructosa/administración & dosificación , Masculino , Polifenoles , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
17.
Diabetes ; 53(6): 1467-74, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15161750

RESUMEN

We previously showed that pancreatic beta-cells express a neuronal isoform of nitric oxide synthase (nNOS) that controls insulin secretion by exerting two enzymatic activities: nitric oxide (NO) production and cytochrome c reductase activity. We now bring evidence that two inhibitors of nNOS, N-omega-nitro-l-arginine methyl ester (l-NAME) and 7-nitroindazole (7-NI), increase glucose-induced insulin secretion but affect beta-cell function differently. In the presence of l-NAME, insulin response is monophasic, whereas 7-NI preserves the normal biphasic secretory pattern. In addition, the alterations of beta-cell functional response induced by the inhibitors also differ by their sensitivity to a substitutive treatment with sodium nitroprusside, a chemical NO donor. These differences are probably related to the nature of the two inhibitors. Indeed, using low-temperature SDS-PAGE and real-time analysis of nNOS dimerization by surface plasmon resonance, we could show that 7-NI, which competes with arginine and tetrahydrobiopterin (BH(4)), an essential cofactor for nNOS dimer formation, inhibits dimerization of the enzyme, whereas the substrate-based inhibitor l-NAME stabilizes the homodimeric state of nNOS. The latter effect could be reproduced by the two endogenous inhibitors of NOS, N-omega-methyl-l-arginine and asymmetric dimethylarginine, and resulted interestingly in a reduced ability of the protein inhibitor of nNOS (PIN) to dissociate nNOS dimers. We conclude that intracellular factors able to induce abnormalities in the nNOS monomer/dimer equilibrium could lead to pancreatic beta-cell dysfunction.


Asunto(s)
Arginina/análogos & derivados , Arginina/farmacología , Proteínas de Drosophila , Glucosa/farmacología , Insulina/metabolismo , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Animales , Proteínas Portadoras/farmacología , Línea Celular , Dimerización , Dineínas , Inhibidores Enzimáticos/farmacología , Indazoles/farmacología , Secreción de Insulina , Cinética , Masculino , Miconazol/farmacología , NG-Nitroarginina Metil Éster/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I , Nitroarginina/farmacología , Nitroprusiato/farmacología , Ratas , Ratas Wistar , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...