Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(2): 167-175, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624348

RESUMEN

Lipids in biological membranes are thought to be functionally organized, but few experimental tools can probe nanoscale membrane structure. Using brominated lipids as contrast probes for cryo-EM and a model ESCRT-III membrane-remodeling system composed of human CHMP1B and IST1, we observed leaflet-level and protein-localized structural lipid patterns within highly constricted and thinned membrane nanotubes. These nanotubes differed markedly from protein-free, flat bilayers in leaflet thickness, lipid diffusion rates and lipid compositional and conformational asymmetries. Simulations and cryo-EM imaging of brominated stearoyl-docosahexanenoyl-phosphocholine showed how a pair of phenylalanine residues scored the outer leaflet with a helical hydrophobic defect where polyunsaturated docosahexaenoyl tails accumulated at the bilayer surface. Combining cryo-EM of halogenated lipids with molecular dynamics thus enables new characterizations of the composition and structure of membranes on molecular length scales.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Humanos , Membrana Dobles de Lípidos/química , Membrana Celular/química , Conformación Molecular , Membranas
2.
J Comput Chem ; 43(6): 431-434, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34921560

RESUMEN

Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte-Carlo (MC) barostat in combination with a hard Lennard-Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force field but requires the MC barostat-hard LJ cutoff combination. Similar simulations of a smaller patch (90 × 90 Å) do not show buckling, but do show a small, systematic reduction in the surface area accompanied by ~1 Å thickening suggestive of compression. We show that a mismatch in the way potentials and forces are handled in the dynamical equations versus the MC barostat results in a compressive load on the membrane. Moreover, a straightforward application of elasticity theory reveals that a minimal compression of the linear dimensions of the membrane, inversely proportional to the edge length, is required for buckling, explaining this differential behavior. We recommend always using LJ force or potential-switching when the MC barostat is employed to avoid undesirable membrane deformations.


Asunto(s)
Membranas Artificiales , Simulación de Dinámica Molecular , Presión , Modelos Teóricos , Método de Montecarlo
3.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810353

RESUMEN

Many pairwise additive force fields are in active use for intrinsically disordered proteins (IDPs) and regions (IDRs), some of which modify energetic terms to improve the description of IDPs/IDRs but are largely in disagreement with solution experiments for the disordered states. This work considers a new direction-the connection to configurational entropy-and how it might change the nature of our understanding of protein force field development to equally well encompass globular proteins, IDRs/IDPs, and disorder-to-order transitions. We have evaluated representative pairwise and many-body protein and water force fields against experimental data on representative IDPs and IDRs, a peptide that undergoes a disorder-to-order transition, for seven globular proteins ranging in size from 130 to 266 amino acids. We find that force fields with the largest statistical fluctuations consistent with the radius of gyration and universal Lindemann values for folded states simultaneously better describe IDPs and IDRs and disorder-to-order transitions. Hence, the crux of what a force field should exhibit to well describe IDRs/IDPs is not just the balance between protein and water energetics but the balance between energetic effects and configurational entropy of folded states of globular proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Teorema de Bayes , Simulación por Computador , Entropía , Espectroscopía de Resonancia Magnética , Péptidos/química , Polímeros/química , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Solventes , Electricidad Estática , Temperatura
4.
Proc Natl Acad Sci U S A ; 117(52): 33246-33253, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318174

RESUMEN

We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.


Asunto(s)
Ingeniería de Proteínas , Proteínas Recombinantes/química , Regulación Alostérica , Biocatálisis , Coenzimas/metabolismo , Ligandos , Metales/metabolismo , Modelos Moleculares , Oxidación-Reducción , Dominios Proteicos , Estructura Secundaria de Proteína
5.
Commun Chem ; 32020.
Artículo en Inglés | MEDLINE | ID: mdl-32775701

RESUMEN

Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology, requiring the characterization of diverse and dynamic structural ensembles. We introduce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure Determination (X-EISD) method, that calculates the maximum log-likelihood of a disordered protein ensemble. X-EISD accounts for the uncertainties of a range of experimental data and back-calculation models from structures, including NMR chemical shifts, J-couplings, Nuclear Overhauser Effects (NOEs), paramagnetic relaxation enhancements (PREs), residual dipolar couplings (RDCs), hydrodynamic radii (R h ), single molecule fluorescence Förster resonance energy transfer (smFRET) and small angle X-ray scattering (SAXS). We apply X-EISD to the joint optimization against experimental data for the unfolded drkN SH3 domain and find that combining a local data type, such as chemical shifts or J-couplings, paired with long-ranged restraints such as NOEs, PREs or smFRET, yields structural ensembles in good agreement with all other data types if combined with representative IDP conformers.

6.
J Chem Phys ; 150(10): 104108, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30876367

RESUMEN

Molecular dynamics simulations of intrinsically disordered proteins (IDPs) can provide high resolution structural ensembles if the force field is accurate enough and if the simulation sufficiently samples the conformational space of the IDP with the correct weighting of sub-populations. Here, we investigate the combined force field-sampling problem by testing a standard force field as well as newer fixed charge force fields, the latter specifically motivated for better description of unfolded states and IDPs, and comparing them with a standard temperature replica exchange (TREx) protocol and a non-equilibrium Temperature Cool Walking (TCW) sampling algorithm. The force field and sampling combinations are used to characterize the structural ensembles of the amyloid-beta peptides Aß42 and Aß43, which both should be random coils as shown recently by experimental nuclear magnetic resonance (NMR) and 2D Förster resonance energy transfer (FRET) experiments. The results illustrate the key importance of the sampling algorithm: while the standard force field using TREx is in poor agreement with the NMR J-coupling and nuclear Overhauser effect and 2D FRET data, when using the TCW method, the standard and optimized protein-water force field combinations are in very good agreement with the same experimental data since the TCW sampling method produces qualitatively different ensembles than TREx. We also discuss the relative merit of the 2D FRET data when validating structural ensembles using the different force fields and sampling protocols investigated in this work for small IDPs such as the Aß42 and Aß43 peptides.


Asunto(s)
Péptidos beta-Amiloides/química , Proteínas Intrínsecamente Desordenadas/química , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Temperatura
7.
Biophys J ; 113(5): 1002-1011, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877484

RESUMEN

Paramagnetic relaxation enhancement is an NMR technique that has yielded important insight into the structure of folded proteins, although the perturbation introduced by the large spin probe might be thought to diminish its usefulness when applied to characterizing the structural ensembles of intrinsically disordered proteins (IDPs). We compare the computationally generated structural ensembles of the IDP amyloid-ß42 (Aß42) to an alternative sequence in which a nitroxide spin label attached to cysteine has been introduced at its N-terminus. Based on this internally consistent computational comparison, we find that the spin label does not perturb the signature population of the ß-hairpin formed by residues 16-21 and 29-36 that is dominant in the Aß42 reference ensemble. However, the presence of the tag induces a strong population shift in a subset of the original Aß42 structural sub-populations, including a sevenfold enhancement of the ß-hairpin formed by residues 27-31 and 33-38. Through back-calculation of NMR observables from the computational structural ensembles, we show that the structural differences between the labeled and unlabeled peptide would be evident in local residual dipolar couplings, and possibly differences in homonuclear 1H-1H nuclear Overhauser effects (NOEs) and heteronuclear 1H-15N NOEs if the paramagnetic contribution to the longitudinal relaxation does not suppress the NOE intensities in the real experiment. This work shows that molecular simulation provides a complementary approach to resolving the potential structural perturbations introduced by reporter tags that can aid in the interpretation of paramagnetic relaxation enhancement, double electron-electron resonance, and fluorescence resonance energy transfer experiments applied to IDPs.


Asunto(s)
Péptidos beta-Amiloides/química , Proteínas Intrínsecamente Desordenadas/química , Fragmentos de Péptidos/química , Marcadores de Spin , Péptidos beta-Amiloides/metabolismo , Animales , Simulación por Computador , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Estructura Secundaria de Proteína
8.
J Chem Phys ; 145(17): 174107, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27825215

RESUMEN

We compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchange (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-ß peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium (http://www.omnia.md/).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA