RESUMEN
Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.
Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Neuroglía , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Masculino , Femenino , Anciano , Anciano de 80 o más Años , Neuroglía/patología , Neuroglía/metabolismo , Estudios Transversales , Estudios Retrospectivos , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo , Persona de Mediana Edad , Neuroimagen , Estudios de Cohortes , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , AutopsiaRESUMEN
We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudios Transversales , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Encéfalo/patología , Hipocampo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Inhibidor de Proteína C/metabolismoRESUMEN
Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Transcriptoma/genéticaRESUMEN
BACKGROUND: African Americans (AA) remain underrepresented in Alzheimer's disease (AD) research, despite the prevalence of AD being double in AA compared to non-Hispanic whites. To address this disparity, our group has established the Florida Consortium for African American Alzheimer's Disease Studies (FCA3DS), focusing on the identification of genetic risk factors and novel plasma biomarkers. METHOD: Utilizing FCA3DS whole exome sequence (WES) and plasma RNA samples from AD cases (n=151) and cognitively unimpaired (CU) elderly controls (n=269), we have performed differential gene expression (DGE) and expression quantitative trait locus (eQTL) analyses on 50 transcripts measured with a custom nanoString® panel. We designed this panel to measure, in plasma, cell-free mRNA (cf-mRNA) levels of AD-relevant genes. FINDINGS: Association with higher plasma CLU in CU vs. AD remained significant after Bonferroni correction. Study-wide significant eQTL associations were observed with 105 WES variants in cis with 22 genes, including variants in genes previously associated with AD risk in AA such as ABCA7 and AKAP9. Results from this plasma eQTL analysis identified AD-risk variants in ABCA7 and AKAP9 that are significantly associated with lower and higher plasma mRNA levels of these genes, respectively. Receiver operating characteristic analysis of age, sex APOE-ε4 dosage, CLU, APP, CD14, ABCA7, AKAP9 and APOE mRNA levels, and ABCA7 and AKAP9 eQTLs, achieved 77% area under the curve to discriminate AD vs. CU, an 8% improvement over a model that only included age, sex and APOE-ε4 dosage. INTERPRETATION: Incorporating plasma mRNA levels could contribute to improved predictive value of AD biomarker panels. FUNDING: This work was supported by the National Institute on Aging [RF AG051504, U01 AG046139, R01 AG061796 to NET; P30 AG062677 to JAL and NGR]; Florida Health Ed and Ethel Moore Alzheimer's Disease grants [5AZ03 and 7AZ17 to NET; 7AZ07 to MMC; 8AZ08 to JAL].
Asunto(s)
Enfermedad de Alzheimer , Negro o Afroamericano , Transportadoras de Casetes de Unión a ATP/genética , Negro o Afroamericano/genética , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores/sangre , Humanos , ARN Mensajero/genéticaRESUMEN
Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer's disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = -3.70 [95% CI -0.49--0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.
Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Angiopatía Amiloide Cerebral/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Isoformas de Proteínas/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/patología , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana EdadRESUMEN
SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.
Asunto(s)
Empalme Alternativo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Dendritas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Empalme Alternativo/genética , Autopsia , Encéfalo/metabolismo , Cerebelo/patología , Estudios de Cohortes , Dendritas/genética , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Proteínas Relacionadas con Receptor de LDL/análisis , Masculino , Proteínas de Transporte de Membrana/análisis , Neuronas/metabolismo , Bancos de TejidosRESUMEN
Missense variants ABI3_rs616338-T and PLCG2_rs72824905-G were previously associated with elevated or reduced risk of Alzheimer's disease (AD), respectively. Despite reports of associations with other neurodegenerative diseases, there are few studies of these variants in purely neuropathologically diagnosed cohorts. Further, the effect of these mutations on neurodegenerative disease pathologies is unknown. In this study, we tested the effects of ABI3_rs616338-T and PLCG2_rs72824905-G on disease risk in autopsy cohorts comprised of 973 patients diagnosed neuropathologically with Lewy body disease (LBD-NP) and 1040 with progressive supranuclear palsy (PSP), compared to 3351 controls. LBD-NP patients were further categorized as high, intermediate and low likelihood of clinical dementia with Lewy bodies (DLB-CL) based on DLB Consortium criteria. We also tested for association with both Braak neurofibrillary tau tangle (nTotal = 2008, nPSP = 1037, nLBD-NP = 971) and Thal phase amyloid plaque scores (nTotal = 1786, nPSP = 1018, nLBD-NP = 768). Additionally, 841 PSP patients had quantitative tau neuropathology measures that were assessed for genetic associations. There was no statistically significant association with disease risk for either LBD-NP or PSP in our study. LBD intermediate category disease risk was significantly associated with ABI3_rs616338-T (OR = 2.65, 95% CI 1.46-4.83, p = 0.001). PLCG2_rs72824905-G was associated with lower Braak stage (ß = - 0.822, 95% CI - 1.439 to - 0.204, p = 0.009). This effect was more pronounced in the PSP (ß = - 0.995, 95% CI - 1.773 to - 0.218, p = 0.012) than LBD-NP patients (ß = - 0.292, 95% CI - 1.283 to 0.698, p = 0.563). PLCG2_rs72824905-G also showed association with reduced quantitative tau pathology for each lesion type and overall tau burden in PSP (ß = - 0.638, 95% CI - 1.139 to - 0.136, p = 0.013). These findings support a role for PLCG2_rs72824905-G in suppressing tau neuropathology. ABI3_rs616338-T may influence disease risk specifically in the LBD-NP intermediate category comprised of patients with diffuse neocortical or limbic LB, concurrently with moderate or high AD neuropathology, respectively. Our study provides a potential mechanism of action for the missense PLCG2 variant and suggests a differential disease risk effect for ABI3 in a distinct LBD-NP neuropathologic category.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad por Cuerpos de Lewy/genética , Fosfolipasa C gamma/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Mutación Missense , Parálisis Supranuclear Progresiva/patologíaRESUMEN
An amendment to this paper has been published and can be accessed via the original article.
RESUMEN
Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer's disease (AD), however these findings can be confounded by cellular composition changes in bulk-tissue. To identify cell intrinsic gene expression alterations of individual cell types, we designed a bioinformatics pipeline and analyzed three AD and control bulk-RNAseq datasets of temporal and dorsolateral prefrontal cortex from 685 brain samples. We detected cell-proportion changes in AD brains that are robustly replicable across the three independently assessed cohorts. We applied three different algorithms including our in-house algorithm to identify cell intrinsic differentially expressed genes in individual cell types (CI-DEGs). We assessed the performance of all algorithms by comparison to single nucleus RNAseq data. We identified consensus CI-DEGs that are common to multiple brain regions. Despite significant overlap between consensus CI-DEGs and bulk-DEGs, many CI-DEGs were absent from bulk-DEGs. Consensus CI-DEGs and their enriched GO terms include genes and pathways previously implicated in AD or neurodegeneration, as well as novel ones. We demonstrated that the detection of CI-DEGs through computational deconvolution methods is promising and highlight remaining challenges. These findings provide novel insights into cell-intrinsic transcriptional changes of individual cell types in AD and may refine discovery and modeling of molecular targets that drive this complex disease.
Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Transcriptoma/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , HumanosRESUMEN
The discovery of mutations associated with familial forms of Alzheimer's disease (AD), has brought imperative insights into basic mechanisms of disease pathogenesis and progression and has allowed researchers to create animal models that assist in the elucidation of the molecular pathways and development of therapeutic interventions. Position 717 in the amyloid precursor protein (APP) is a hotspot for mutations associated with autosomal dominant AD (ADAD) and the valine to isoleucine amino acid substitution (V717I) at this position was among the first ADAD mutations identified, spearheading the formulation of the amyloid cascade hypothesis of AD pathogenesis. While this mutation is well described in multiple kindreds and has served as the basis for the generation of widely used animal models of disease, neuropathologic data on patients carrying this mutation are scarce. Here we present the detailed clinical and neuropathologic characterization of an APP V717I carrier, which reveals important novel insights into the phenotypic variability of ADAD cases. While age at onset, clinical presentation and widespread parenchymal beta-amyloid (Aß) deposition are in line with previous reports, our case also shows widespread and severe cerebral amyloid angiopathy (CAA). This patient also presented with TDP-43 pathology in the hippocampus and amygdala, consistent with limbic predominant age-related TDP-43 proteinopathy (LATE). The APOE ε2/ε3 genotype may have been a major driver of the prominent vascular pathology seen in our case. These findings highlight the importance of neuropathologic examinations of genetically determined AD cases and demonstrate striking phenotypic variability in ADAD cases.
Asunto(s)
Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patología , Angiopatía Amiloide Cerebral/patología , Placa Amiloide/patología , Proteinopatías TDP-43/patología , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Encéfalo/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/fisiopatología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Mutación Missense , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fragmentos de Péptidos/metabolismo , Fenotipo , Placa Amiloide/metabolismo , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/fisiopatología , Proteínas tau/metabolismoRESUMEN
BACKGROUND: Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer's disease (AD). METHODS: We tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson's disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls). 1479 AD and 1491 controls were non-overlapping with a prior report. RESULTS: Using Fisher's exact test, there was significant association of both ABI3_rs616338-T (OR = 1.41, p = 0.044) and PLCG2_rs72824905-G (OR = 0.56, p = 0.008) with AD. These OR estimates were maintained in the non-overlapping replication AD-control analysis, albeit at reduced significance (ABI3_rs616338-T OR = 1.44, p = 0.12; PLCG2_rs72824905-G OR = 0.66, p = 0.19). None of the other cohorts showed significant associations that were concordant with those for AD, although the DLB cohort had suggestive findings (Fisher's test: ABI3_rs616338-T OR = 1.79, p = 0.097; PLCG2_rs72824905-G OR = 0.32, p = 0.124). PLCG2_rs72824905-G showed suggestive association with pathologically-confirmed MSA (OR = 2.39, p = 0.050) and PSP (OR = 1.97, p = 0.061), although in the opposite direction of that for AD. We assessed RNA sequencing data from 238 temporal cortex (TCX) and 224 cerebellum (CER) samples from AD, PSP and control patients and identified co-expression networks, enriched in microglial genes and immune response GO terms, and which harbor PLCG2 and/or ABI3. These networks had higher expression in AD, but not in PSP TCX, compared to controls. This expression association did not survive adjustment for brain cell type population changes. CONCLUSIONS: We validated the associations previously reported with ABI3_rs616338-T and PLCG2_rs72824905-G in a Caucasian AD case-control cohort, and observed a similar direction of effect in DLB. Conversely, PLCG2_rs72824905-G showed suggestive associations with PSP and MSA in the opposite direction. We identified microglial gene-enriched co-expression networks with significantly higher levels in AD TCX, but not in PSP, a primary tauopathy. This co-expression network association appears to be driven by microglial cell population changes in a brain region affected by AD pathology. Although these findings require replication in larger cohorts, they suggest distinct effects of the microglial genes, ABI3 and PLCG2 in neurodegenerative diseases that harbor significant vs. low/no amyloid ß pathology.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mutación Missense , Enfermedades Neurodegenerativas/genética , Fosfolipasa C gamma/genética , Negro o Afroamericano/genética , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Microglía/metabolismo , Factores de Riesgo , Población Blanca/genéticaRESUMEN
SORL1 encodes a 250-kDa protein named sorLA, a functional sorting receptor for the amyloid precursor protein (APP). Several single nucleotide polymorphisms of the gene SORL1, encoding sorLA, are genetically associated with Alzheimer's disease (AD). In the existing literature, SORL1 is insufficiently described at the transcriptional level, and there is very limited amount of functional data defining different transcripts. We have characterized a SORL1 transcript containing a novel exon 30B. The transcript is expressed in most brain regions with highest expression in the temporal lobe and hippocampus. Exon 30B is spliced to exon 31, leading to a mature transcript that encodes an 829 amino acid sorLA receptor. This receptor variant lacks the binding site for APP and is unlikely to function in APP sorting. This transcript is expressed in equal amounts in the cerebellum from AD and non-AD individuals. Our data describe a transcript that encodes a truncated sorLA receptor, suggesting novel neuronal functions for sorLA and that alternative transcription provides a mechanism for SORL1 activity regulation.
Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Anciano , Enfermedad de Alzheimer/metabolismo , Línea Celular , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Análisis de Secuencia de ADNRESUMEN
Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neuropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct cell-specific tau lesions has not been explored. In this study, we integrated brain gene expression measurements, quantitative neuropathology traits and genome-wide genotypes from 268 autopsy-confirmed PSP patients to identify transcriptional associations with unique cell-specific tau pathologies. We provide individual transcript and transcriptional network associations for quantitative oligodendroglial (coiled bodies = CB), neuronal (neurofibrillary tangles = NFT), astrocytic (tufted astrocytes = TA) tau pathology, and tau threads and genomic annotations of these findings. We identified divergent patterns of transcriptional associations for the distinct tau lesions, with the neuronal and astrocytic neuropathologies being the most different. We determined that NFT are positively associated with a brain co-expression network enriched for synaptic and PSP candidate risk genes, whereas TA are positively associated with a microglial gene-enriched immune network. In contrast, TA is negatively associated with synaptic and NFT with immune system transcripts. Our findings have implications for the diverse molecular mechanisms that underlie cell-specific vulnerability and disease risk in PSP.
Asunto(s)
Química Encefálica/genética , Expresión Génica/genética , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Tauopatías/genética , Tauopatías/patología , Anciano , Astrocitos/patología , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Sistema Inmunológico/patología , Inmunohistoquímica , Masculino , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Neuronas/patología , Proteoma , ARN/biosíntesis , ARN/genética , Sinapsis/patologíaRESUMEN
OBJECTIVE: To investigate and characterize putative "loss-of-function" (LOF) adenosine triphosphate-binding cassette, subfamily A member 7 (ABCA7) mutations reported to associate with Alzheimer disease (AD) risk. METHODS: We genotyped 6 previously reported ABCA7 putative LOF variants in 1,465 participants with AD, 381 participants with other neuropathologies (non-AD), and 1,043 controls and assessed the overall mutational burden for association with different diagnosis groups. We measured brain ABCA7 protein and messenger RNA (mRNA) levels using Western blot and quantitative PCR, respectively, in 11 carriers of the 3 most common variants, and sequenced all 47 ABCA7 exons in these participants to screen for other coding variants. RESULTS: At least one of the investigated variants was identified in 45 participants with late-onset Alzheimer disease, 12 participants with other neuropathologies, and 11 elderly controls. Association analysis revealed a significantly higher burden of these variants in participants with AD (p = 5.00E-04) and those with other neuropathologies (p = 8.60E-03) when compared with controls. Concurrent analysis of brain ABCA7 mRNA and protein revealed lower protein but not mRNA in p.L1403fs carriers, lower mRNA but not protein in p.E709fs carriers, and additional deleterious mutations in some c.5570+5G>C carriers. CONCLUSIONS: Our results suggest that LOF may not be a common mechanism for these ABCA7 variants and expand the list of neurologic diseases enriched for them.
RESUMEN
Posterior cortical atrophy (PCA) is an understudied visual impairment syndrome most often due to "posterior Alzheimer's disease (AD)" pathology. Case studies detected mutations in PSEN1, PSEN2, GRN, MAPT, and PRNP in subjects with clinical PCA. To detect the frequency and spectrum of mutations in known dementia genes in PCA, we screened 124 European-American subjects with clinical PCA (n = 67) or posterior AD neuropathology (n = 57) for variants in genes implicated in AD, frontotemporal dementia, and prion disease using NeuroX, a customized exome array. Frequencies in PCA of the variants annotated as pathogenic or potentially pathogenic were compared against ⼠4300 European-American population controls from the NHLBI Exome Sequencing Project. We identified 2 rare variants not previously reported in PCA, TREM2 Arg47His, and PSEN2 Ser130Leu. No other pathogenic or potentially pathogenic variants were detected in the screened dementia genes. In this first systematic variant screen of a PCA cohort, we report 2 rare mutations in TREM2 and PSEN2, validate our previously reported APOE ε4 association, and demonstrate the utility of NeuroX.
Asunto(s)
Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/genética , Mutación , Presenilina-2/genética , Receptores Inmunológicos/genética , Trastornos de la Visión/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Exoma/genética , Femenino , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Masculino , Persona de Mediana Edad , SíndromeRESUMEN
Mutations in the LRRK2 gene are the most common cause of genetic Parkinson's disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation.We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis.Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes.
Asunto(s)
Dopamina/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia/genética , Conducta Animal , Riñón/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/deficienciaRESUMEN
The c.4309A>C mutation in the LRRK2 gene (LRRK2 p.N1437H) has recently been reported as the seventh pathogenic LRRK2 mutation causing monogenic Parkinson's disease (PD). So far, only two families worldwide have been identified with this mutation. By screening DNA from seven brains of PD patients, we found one individual with seemingly sporadic PD and LRRK2 p.N1437H mutation. Clinically, the patient had levodopa-responsive PD with tremor, and developed severe motor fluctuations during a disease duration of 19 years. There was severe and painful ON-dystonia, and severe depression with suicidal thoughts during OFF. In the advanced stage, cognition was slow during motor OFF, but there was no noticeable cognitive decline. There were no signs of autonomic nervous system dysfunction. Bilateral deep brain stimulation of the subthalamic nucleus had unsatisfactory results on motor symptoms. The patient committed suicide. Neuropathological examination revealed marked cell loss and moderate alpha-synuclein positive Lewy body pathology in the brainstem. There was sparse Lewy pathology in the cortex. A striking finding was very pronounced ubiquitin-positive pathology in the brainstem, temporolimbic regions and neocortex. Ubiquitin positivity was most pronounced in the white matter, and was out of proportion to the comparatively weaker alpha-synuclein immunoreactivity. Immunostaining for tau was mildly positive, revealing non-specific changes, but staining for TDP-43 and FUS was entirely negative. The distribution and shape of ubiquitin-positive lesions in this patient differed from the few previously described patients with LRRK2 mutations and ubiquitin pathology, and the ubiquitinated protein substrate remains undefined.
Asunto(s)
Asparagina/genética , Encéfalo/patología , Histidina/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , Anciano , Encéfalo/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Salud de la Familia , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Imagen por Resonancia Magnética , Masculino , Proteína FUS de Unión a ARN/metabolismo , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.
Asunto(s)
Cromosomas Humanos Par 3/genética , Factor 4G Eucariótico de Iniciación/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas/genética , Secuencia de Bases , Clonación Molecular , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Citometría de Flujo , Ligamiento Genético , Genotipo , Humanos , Inmunoprecipitación , Mitocondrias/fisiología , Datos de Secuencia Molecular , Mutación Missense/genética , LinajeRESUMEN
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Asunto(s)
Mutación , Enfermedad de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Adulto , Edad de Inicio , Secuencia de Aminoácidos , Transporte Biológico , Endosomas/genética , Endosomas/metabolismo , Femenino , Regulación de la Expresión Génica , Variación Genética , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismoRESUMEN
Rare mutations in PARK loci genes cause Parkinson's disease (PD) in some families and isolated populations. We investigated the association of common variants in PARK loci and related genes with PD susceptibility and age at onset in an outbred population. A total of 1,103 PD cases from the upper Midwest, USA, were individually matched to unaffected siblings (n = 654) or unrelated controls (n = 449) from the same region. Using a sequencing approach in 25 cases and 25 controls, single nucleotide polymorphisms (SNPs) in species-conserved regions of PARK loci and related genes were detected. We selected additional tag SNPs from the HapMap. We genotyped a total of 235 SNPs and two variable number tandem repeats in the ATP13A2, DJ1, LRRK1, LRRK2, MAPT, Omi/HtrA2, PARK2, PINK1, SNCA, SNCB, SNCG, SPR, and UCHL1 genes in all 2,206 subjects. Case-control analyses were performed to study association with PD susceptibility, while cases-only analyses were used to study association with age at onset. Only MAPT SNP rs2435200 was associated with PD susceptibility after correction for multiple testing (OR = 0.74, 95% CI = 0.64-0.86, uncorrected P < 0.0001, log additive model); however, 16 additional MAPT variants, seven SNCA variants, and one LRRK2, PARK2, and UCHL1 variants each had significant uncorrected P-values. There were no significant associations for age at onset after correction for multiple testing. Our results confirm the association of MAPT and SNCA genes with PD susceptibility but show limited association of other PARK loci and related genes with PD.