Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992089

RESUMEN

Mitochondria contain dedicated ribosomes (mitoribosomes), which synthesize the mitochondrial-encoded core components of the oxidative phosphorylation complexes. The RNA and protein components of mitoribosomes are encoded on two different genomes (mitochondrial and nuclear) and are assembled into functional complexes with the help of dedicated factors inside the organelle. Defects in mitoribosome biogenesis are associated with severe human diseases, yet the molecular pathway of mitoribosome assembly remains poorly understood. Here, we applied a multidisciplinary approach combining biochemical isolation and analysis of native mitoribosomal assembly complexes with quantitative mass spectrometry and mathematical modeling to reconstitute the entire assembly pathway of the human mitoribosome. We show that, in contrast to its bacterial and cytosolic counterparts, human mitoribosome biogenesis involves the formation of ribosomal protein-only modules, which then assemble on the appropriate ribosomal RNA moiety in a coordinated fashion. The presence of excess protein-only modules primed for assembly rationalizes how mitochondria cope with the challenge of forming a protein-rich ribonucleoprotein complex of dual genetic origin. This study provides a comprehensive roadmap of mitoribosome biogenesis, from very early to late maturation steps, and highlights the evolutionary divergence from its bacterial ancestor.

2.
Ecol Evol ; 14(3): e11136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469038

RESUMEN

Wetland habitats are changing under multiple anthropogenic pressures. Nutrient leakage and pollution modify physico-chemical state of wetlands and affect the ecosystem through bottom-up processes, while alien predators affect the ecosystems in a top-down manner. Boreal wetlands are important breeding areas for several waterbird species, the abundances of which potentially reflect both bottom-up and top-down ecosystem processes. Here, we use long-term national monitoring data gathered from c. 130 waterbird breeding sites in Finland from the 1980s to the 2020s. We hypothesised that the physico-chemical state of the waters and increasing alien predator abundance both play a role in steering the waterbird population trends. We set out to test this hypothesis by relating population changes of 17 waterbird species to changes in water chemistry and to regional alien predator indices while allowing species-specific effects to vary with foraging niche (dabblers, invertivore divers, piscivorous divers, herbivores), nesting site, female mass and habitat (oligotrophic, eutrophic). We found niche and nesting site-specific, habitat-dependent changes in waterbird numbers. While the associations with higher phosphorus levels and browning water were in overall positive at the oligotrophic lakes, the numbers of invertivore and piscivore diving ducks were most strongly negatively associated with higher phosphorus levels and browning water at the eutrophic lakes. Furthermore, increased pH levels benefitted piscivores. Invertivore diving duck species nesting on the wetlands had declined most on sites with high alien predator indices. Large herbivorous species and species preferring oligotrophic lakes seem to be successful. We conclude that the large-scale breeding waterbird decline in Finland is closely connected to both bottom-up and top-down processes, where negative associations are emphasised especially at eutrophic lakes. Niche-, nest site- and habitat-specific management actions are required to conserve declining waterbird populations. Managing wetlands on catchments level together with alien predator control may provide important approaches to future wetland management.

3.
Nat Commun ; 14(1): 5426, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704608

RESUMEN

Protected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual multi-taxon approach to compare occupancy patterns of 638 species, including birds (150), mammals (23), plants (39) and phytoplankton (426) between protected and unprotected sites across four decades in Finland. We find mixed impacts of protected areas, with only a small proportion of species explicitly benefiting from protection-mainly through slower rates of decline inside protected areas. The benefits of protection are enhanced for larger protected areas and are traceable to when the sites were protected, but are mostly unrelated to species conservation status or traits (size, climatic niche and threat status). Our results suggest that the current protected area network can partly contribute to slow down declines in occupancy rates, but alone will not suffice to halt the biodiversity crisis. Efforts aimed at improving coverage, connectivity and management will be key to enhance the effectiveness of protected areas towards bending the curve of biodiversity loss.


Asunto(s)
Biodiversidad , Agua Dulce , Animales , Finlandia , Fenotipo , Fitoplancton , Mamíferos
4.
Mol Cell ; 83(14): 2464-2477.e5, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37369200

RESUMEN

Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Mensajero , Humanos , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Mensajero/ultraestructura , Microscopía por Crioelectrón , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Transcripción Genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/ultraestructura , Modelos Químicos
5.
Proc Biol Sci ; 290(1996): 20222470, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040809

RESUMEN

Identifying factors that drive infection dynamics in reservoir host populations is essential in understanding human risk from wildlife-originated zoonoses. We studied zoonotic Puumala orthohantavirus (PUUV) in the host, the bank vole (Myodes glareolus), populations in relation to the host population, rodent and predator community and environment-related factors and whether these processes are translated into human infection incidence. We used 5-year rodent trapping and bank vole PUUV serology data collected from 30 sites located in 24 municipalities in Finland. We found that PUUV seroprevalence in the host was negatively associated with the abundance of red foxes, but this process did not translate into human disease incidence, which showed no association with PUUV seroprevalence. The abundance of weasels, the proportion of juvenile bank voles in the host populations and rodent species diversity were negatively associated with the abundance index of PUUV positive bank voles, which, in turn, showed a positive association with human disease incidence. Our results suggest certain predators, a high proportion of young bank vole individuals, and a diverse rodent community, may reduce PUUV risk for humans through their negative impacts on the abundance of infected bank voles.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Animales Salvajes , Estudios Seroepidemiológicos , Arvicolinae
6.
PLoS One ; 17(11): e0277365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395095

RESUMEN

The knowledge of the structural and chemical properties of biochars is decisive for their application as technical products. For this reason, methods for the characterization of biochars that are generally applicable and allow quality control are highly desired. Several methods that have shown potential in other studies were used to investigate two activated carbons and seven biochars from different processes and feedstock. The chars were chosen to cover a wide range of chemical composition and structural properties as a hardness test for the analytical methods used in this study. Specific problems connected with the pretreatment of samples and drawbacks of some methods for some types of chars could be identified in an integrated consideration of the results from different methods. None of the spectroscopic methods was found to be suitable for the quality control of all types of chars. The most valuable results were obtained by chemical analysis that, however, required the complete determination of the main elements, including that of oxygen, and of inorganic components for adequate results. The combination of X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopy allows a rough characterization of surface functional groups, but cannot discriminate aliphatic and aromatic OH groups. FT-IR might be a suitable method for the quality control of biochars made at lower temperature. The results of Raman spectroscopy did not well correlate with the amount of sp2 hybridized carbon determined by XPS. A better correlation of XPS data was found with the electrical polarization determined by the method of spectral induced polarization that was used for the first time in conjunction with extensive analytical characterization.


Asunto(s)
Carbón Orgánico , Espectroscopía Infrarroja por Transformada de Fourier , Carbón Orgánico/química , Espectroscopía de Fotoelectrones , Temperatura
7.
Parasit Vectors ; 15(1): 310, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042518

RESUMEN

BACKGROUND: Ticks are responsible for transmitting several notable pathogens worldwide. Finland lies in a zone where two human-biting tick species co-occur: Ixodes ricinus and Ixodes persulcatus. Tick densities have increased in boreal regions worldwide during past decades, and tick-borne pathogens have been identified as one of the major threats to public health in the face of climate change. METHODS: We used species distribution modelling techniques to predict the distributions of I. ricinus and I. persulcatus, using aggregated historical data from 2014 to 2020 and new tick occurrence data from 2021. By aiming to fill the gaps in tick occurrence data, we created a new sampling strategy across Finland. We also screened for tick-borne encephalitis virus (TBEV) and Borrelia from the newly collected ticks. Climate, land use and vegetation data, and population densities of the tick hosts were used in various combinations on four data sets to estimate tick species' distributions across mainland Finland with a 1-km resolution. RESULTS: In the 2021 survey, 89 new locations were sampled of which 25 new presences and 63 absences were found for I. ricinus and one new presence and 88 absences for I. persulcatus. A total of 502 ticks were collected and analysed; no ticks were positive for TBEV, while 56 (47%) of the 120 pools, including adult, nymph, and larva pools, were positive for Borrelia (minimum infection rate 11.2%, respectively). Our prediction results demonstrate that two combined predictor data sets based on ensemble mean models yielded the highest predictive accuracy for both I. ricinus (AUC = 0.91, 0.94) and I. persulcatus (AUC = 0.93, 0.96). The suitable habitats for I. ricinus were determined by higher relative humidity, air temperature, precipitation sum, and middle-infrared reflectance levels and higher densities of white-tailed deer, European hare, and red fox. For I. persulcatus, locations with greater precipitation and air temperature and higher white-tailed deer, roe deer, and mountain hare densities were associated with higher occurrence probabilities. Suitable habitats for I. ricinus ranged from southern Finland up to Central Ostrobothnia and North Karelia, excluding areas in Ostrobothnia and Pirkanmaa. For I. persulcatus, suitable areas were located along the western coast from Ostrobothnia to southern Lapland, in North Karelia, North Savo, Kainuu, and areas in Pirkanmaa and Päijät-Häme. CONCLUSIONS: This is the first study conducted in Finland that estimates potential tick species distributions using environmental and host data. Our results can be utilized in vector control strategies, as supporting material in recommendations issued by public health authorities, and as predictor data for modelling the risk for tick-borne diseases.


Asunto(s)
Borrelia , Ciervos , Virus de la Encefalitis Transmitidos por Garrapatas , Liebres , Ixodes , Animales , Borrelia/genética , Ecosistema , Finlandia/epidemiología , Humanos
8.
Sci Rep ; 12(1): 11601, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804004

RESUMEN

Protected areas are a cornerstone for biodiversity conservation, and typically support more natural and undisturbed habitats compared to unprotected lands. The effect of protected areas on intra-specific ecological niche has been rarely investigated. Here, we explore potential differences in ecological niche properties of birds and mammals across protected and unprotected areas, and relate such differences to species traits. We combine two decades of survey data of birds and mammals from protected and unprotected areas, and apply robust matching to obtain a set of environmentally comparable protected and unprotected sites. Next, we calculate intra-specific niche volume change and habitat shift between protected and unprotected areas, and use generalized linear mixed models to explain these responses with species traits (habitat specialization, body mass, diet, and red list status). The majority of bird and mammal species (83% and 90%, respectively) show different habitat use when occurring within and outside protected areas, with the magnitude of this shift highly varying across species. A minority of species (16% of birds and 10% of mammals) do not change their niche volume nor shift their habitat between protected and unprotected areas. Variation in niche properties is largely unrelated to species traits. Overall, the varying ecological niche responses of birds and mammals to protected areas underscore that there is no universal niche-based response, and that niche responses to land protection are species-specific.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Ecosistema , Mamíferos/fisiología , Animales , Biodiversidad , Especificidad de la Especie
9.
J Biol Chem ; 298(7): 102144, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714772

RESUMEN

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Asunto(s)
Proteínas Bacterianas , Fosfatos de Dinucleósidos , Adenina/metabolismo , Adenosina Monofosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo
10.
Nucleic Acids Res ; 50(9): 5282-5298, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489072

RESUMEN

Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2-GTP-Met-tRNAiMet and eIF3. The 'open' 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The 'closed' form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Codón Iniciador/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Mamíferos/genética , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Science ; 374(6569): 883-887, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762484

RESUMEN

Integrator and protein phosphatase 2A (PP2A) form a complex that dephosphorylates paused RNA polymerase II (Pol II), cleaves the nascent RNA, and terminates transcription. We report the structure of the pretermination complex containing the human Integrator-PP2A complex bound to paused Pol II. Integrator binds Pol II and the pausing factors DSIF and NELF to exclude binding of the elongation factors SPT6 and PAF1 complex. Integrator also binds the C-terminal domain of Pol II and positions PP2A to counteract Pol II phosphorylation and elongation. The Integrator endonuclease docks to the RNA exit site and opens to cleave nascent RNA about 20 nucleotides from the Pol II active site. Integrator does not bind the DNA clamps formed by Pol II and DSIF, enabling release of DNA and transcription termination.


Asunto(s)
Regulación de la Expresión Génica , Complejos Multiproteicos/química , Proteína Fosfatasa 2/química , ARN Polimerasa II/química , Transcripción Genética , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN/metabolismo , ARN Polimerasa II/metabolismo
12.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Nat Commun ; 12(1): 5715, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588454

RESUMEN

Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fraccionamiento Celular , Núcleo Celular/metabolismo , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/aislamiento & purificación , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Unión Proteica/genética , Mapeo de Interacción de Proteínas/métodos , Precursores de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
14.
Artículo en Inglés | MEDLINE | ID: mdl-34281003

RESUMEN

Pogosta disease is a mosquito-borne infection, caused by Sindbis virus (SINV), which causes epidemics of febrile rash and arthritis in Northern Europe and South Africa. Resident grouse and migratory birds play a significant role as amplifying hosts and various mosquito species, including Aedes cinereus, Culex pipiens, Cx. torrentium and Culiseta morsitans are documented vectors. As specific treatments are not available for SINV infections, and joint symptoms may persist, the public health burden is considerable in endemic areas. To predict the environmental suitability for SINV infections in Finland, we applied a suite of geospatial and statistical modeling techniques to disease occurrence data. Using an ensemble approach, we first produced environmental suitability maps for potential SINV vectors in Finland. These suitability maps were then combined with grouse densities and environmental data to identify the influential determinants for SINV infections and to predict the risk of Pogosta disease in Finnish municipalities. Our predictions suggest that both the environmental suitability for vectors and the high risk of Pogosta disease are focused in geographically restricted areas. This provides evidence that the presence of both SINV vector species and grouse densities can predict the occurrence of the disease. The results support material for public-health officials when determining area-specific recommendations and deliver information to health care personnel to raise awareness of the disease among physicians.


Asunto(s)
Aedes , Infecciones por Alphavirus , Infecciones por Alphavirus/epidemiología , Animales , Europa (Continente) , Finlandia/epidemiología , Mosquitos Vectores , Virus Sindbis , Sudáfrica
15.
Nat Commun ; 12(1): 3672, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135319

RESUMEN

Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


Asunto(s)
Proteínas de Unión al GTP/química , Ribosomas Mitocondriales/química , Proteínas de Unión al GTP Monoméricas/química , Microscopía por Crioelectrón , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Biogénesis de Organelos , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Pliegue de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
16.
Ecol Evol ; 11(9): 4035-4045, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976792

RESUMEN

Benthic species and communities are linked to pelagic zooplankton through life-stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state-space models to long (1966-2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment-dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.

17.
JACS Au ; 1(12): 2162-2171, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34977887

RESUMEN

Polyketide synthases (PKSs) are versatile C-C bond-forming enzymes that are broadly distributed in bacteria and fungi. The polyketide compound family includes many clinically useful drugs such as the antibiotic erythromycin, the antineoplastic epothilone, and the cholesterol-lowering lovastatin. Harnessing PKSs for custom compound synthesis remains an open challenge, largely because of the lack of knowledge about key structural properties. Particularly, the domains-well characterized on their own-are poorly understood in their arrangement, conformational dynamics, and interplay in the intricate quaternary structure of modular PKSs. Here, we characterize module 2 from the 6-deoxyerythronolide B synthase by small-angle X-ray scattering and cross-linking mass spectrometry with coarse-grained structural modeling. The results of this hybrid approach shed light on the solution structure of a cis-AT type PKS module as well as its inherent conformational dynamics. Supported by a directed evolution approach, we also find that acyl carrier protein (ACP)-mediated substrate shuttling appears to be steered by a nonspecific electrostatic interaction network.

18.
FEBS Lett ; 595(2): 157-168, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33125709

RESUMEN

The majority of mitochondrial proteins are nuclear encoded and imported into mitochondria as precursor proteins via dedicated translocases. The translocase of the inner membrane 22 (TIM22) is a multisubunit molecular machine specialized for the translocation of hydrophobic, multi-transmembrane-spanning proteins with internal targeting signals into the inner mitochondrial membrane. Here, we undertook a crosslinking-mass spectrometry (XL-MS) approach to determine the molecular arrangement of subunits of the human TIM22 complex. Crosslinking of the isolated TIM22 complex using the BS3 crosslinker resulted in the broad generation of crosslinks across the majority of TIM22 components, including the small TIM chaperone complex. The crosslinking data uncovered several unexpected features, opening new avenues for a deeper investigation into the steps required for TIM22-mediated translocation in humans.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Succinimidas/química , Cromatografía Liquida , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana Mitocondrial/química , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Espectrometría de Masas en Tándem
19.
Nucleic Acids Res ; 48(22): 12929-12942, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264405

RESUMEN

Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.


Asunto(s)
Proteínas de Unión al GTP/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales , GTP Fosfohidrolasas/genética , Humanos , Metiltransferasas/genética , Proteínas de Unión al GTP Monoméricas/genética , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/genética , Factores de Transcripción/genética
20.
Nat Struct Mol Biol ; 27(7): 668-677, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541898

RESUMEN

Transcription by RNA polymerase II (Pol II) is carried out by an elongation complex. We previously reported an activated porcine Pol II elongation complex, EC*, encompassing the human elongation factors DSIF, PAF1 complex (PAF) and SPT6. Here we report the cryo-EM structure of the complete EC* that contains RTF1, a dissociable PAF subunit critical for chromatin transcription. The RTF1 Plus3 domain associates with Pol II subunit RPB12 and the phosphorylated C-terminal region of DSIF subunit SPT5. RTF1 also forms four α-helices that extend from the Plus3 domain along the Pol II protrusion and RPB10 to the polymerase funnel. The C-terminal 'fastener' helix retains PAF and is followed by a 'latch' that reaches the end of the bridge helix, a flexible element of the Pol II active site. RTF1 strongly stimulates Pol II elongation, and this requires the latch, possibly suggesting that RTF1 activates transcription allosterically by influencing Pol II translocation.


Asunto(s)
Complejos Multiproteicos/química , ARN Polimerasa II/metabolismo , Factores de Transcripción/química , Regulación Alostérica , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , ARN Polimerasa II/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...