Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Water Res ; 253: 121259, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377923

RESUMEN

The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Nitritos , Nitratos , Rayos Ultravioleta , Dióxido de Nitrógeno , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción
2.
Water Res ; 249: 120923, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064784

RESUMEN

Novel UV sources, which do not contain mercury, provide the opportunity for enhancement of current oxidation technologies through spectral optimization, minimizing inefficiencies that currently limit conventional technology. Wastewater reuse is the primary full-scale application of UV advanced oxidation processes (AOPs) in practice but any background absorbance and the low molar absorption by conventional radical promoters (hydrogen peroxide) have historically limited their system efficiency, resulting in the underutilization of photons in a reactor. This bench-scale research evaluated use of longer wavelength UV light emitting diodes (265, 280, and 300 nm) matched with free chlorine to optimize the utilization of photons for advanced oxidation. Free chlorine possesses large absorption bands in the 280 to 300 nm range in basic pH waters which are common in carbon-based reuse and was used to experimentally verify quantum yields of hydroxyl radical generation across the UV LED peak emission wavelengths. pH- and wavelength-dependent fluence-based rate constants were experimentally derived using Nitrobenzene and Benzoic acid as probe compounds and evaluated to determine the contribution of the hydroxyl and chlorine radical. Reclaimed water taken from various advanced treatment steps was treated with this UV LED AOP to investigate how background absorbance affects radical generation and contaminant transformation kinetics. In addition, alternative performance metrics to evaluate hydroxyl radical production at different incident fluence rates and different rates of photon absorption at unique wavelengths across varying background UV absorbance levels were assessed.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro/química , Radical Hidroxilo/química , Rayos Ultravioleta , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Peróxido de Hidrógeno/química
3.
Environ Sci Technol ; 57(51): 21876-21887, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37978925

RESUMEN

Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.


Asunto(s)
Agua Potable , Purificación del Agua , Cloro/farmacología , Esporas Fúngicas , Fotólisis , Desinfección , Rayos Ultravioleta , Cloruros
4.
Environ Sci Technol ; 57(47): 18909-18917, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37186817

RESUMEN

Krypton chloride (KrCl*) excimer ultraviolet (UV) light may provide advantages for contaminant degradation compared to conventional low-pressure (LP) UV. Direct and indirect photolysis as well as UV/hydrogen peroxide-driven advanced oxidation (AOP) of two chemical contaminants were investigated in laboratory grade water (LGW) and treated secondary effluent (SE) for LPUV and filtered KrCl* excimer lamps emitting at 254 and 222 nm, respectively. Carbamazepine (CBZ) and N-nitrosodimethylamine (NDMA) were chosen because of their unique molar absorption coefficient profiles, quantum yields (QYs) at 254 nm, and reaction rate constants with hydroxyl radical. Quantum yields and molar absorption coefficients at 222 nm for both CBZ and NDMA were determined, with measured molar absorption coefficients of 26 422 and 8170 M-1 cm-1, respectively, and QYs of 1.95 × 10-2 and 6.68 × 10-1 mol Einstein-1, respectively. The 222 nm irradiation of CBZ in SE improved degradation compared to that in LGW, likely through promotion of in situ radical formation. AOP conditions improved degradation of CBZ in LGW for both UV LP and KrCl* sources but did not improve NDMA decay. In SE, photolysis of CBZ resulted in decay similar to that of AOP, likely due to the in situ generation of radicals. Overall, the KrCl* 222 nm source significantly improves contaminant degradation compared to that of 254 nm LPUV.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Dimetilnitrosamina , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción , Carbamazepina , Rayos Ultravioleta , Fotólisis , Peróxido de Hidrógeno , Purificación del Agua/métodos
5.
Lancet Glob Health ; 11(4): e606-e614, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36925180

RESUMEN

Drinking water and sanitation services in high-income countries typically bring widespread health and other benefits to their populations. Yet gaps in this essential public health infrastructure persist, driven by structural inequalities, racism, poverty, housing instability, migration, climate change, insufficient continued investment, and poor planning. Although the burden of disease attributable to these gaps is mostly uncharacterised in high-income settings, case studies from marginalised communities and data from targeted studies of microbial and chemical contaminants underscore the need for continued investment to realise the human rights to water and sanitation. Delivering on these rights requires: applying a systems approach to the problems; accessible, disaggregated data; new approaches to service provision that centre communities and groups without consistent access; and actionable policies that recognise safe water and sanitation provision as an obligation of government, regardless of factors such as race, ethnicity, gender, ability to pay, citizenship status, disability, land tenure, or property rights.


Asunto(s)
Agua Potable , Racismo , Humanos , Saneamiento , Racismo/prevención & control , Países Desarrollados , Abastecimiento de Agua , Aislamiento Social
6.
Sci Total Environ ; 869: 161848, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709900

RESUMEN

The COVID-19 pandemic has promoted interest in using devices emitting ultraviolet-C (UVC) irradiation (200-280 nm) for surface disinfection to reduce pathogen transmission, especially in occupied public spaces. While UVC devices have been shown to be highly effective against various pathogens, there are safety concerns when using conventional UVC devices for surface disinfection, including human exposure of reflected UVC irradiation and ozone generation. Emerging Far UVC devices (emitting at 200-230 nm), like the krypton chloride (KrCl*) excimer, have the potential to be safely applied in occupied spaces due to their minimal adverse effects on skin and eyes. In this study, UV reflection of 21 common materials was documented and compared using a filtered KrCl* excimer (installed with a bandpass filter at 222 nm), an unfiltered KrCl* excimer, and a conventional low-pressure mercury vapor lamp. The safety of Far UVC devices was evaluated based on the irradiance and spectrum of reflected UV irradiation and ozone generation measured at various locations around the device. Our results show that most common materials can reflect UV irradiation, among which some metals tend to have greater reflection. The Far UVC devices, especially the filtered KrCl* excimer, should be safe to be applied in occupied spaces for effective surface disinfection, with limited ozone generation and no health risk from reflected UV irradiation. However more caution is needed when using unfiltered KrCl* devices and conventional UV 254 nm light. This study provides urgently needed data on UV reflection of common materials and guidance for safety assessments of UVC devices for surface disinfection in occupied spaces.


Asunto(s)
COVID-19 , Desinfección , Humanos , Desinfección/métodos , Pandemias , Rayos Ultravioleta , Piel
7.
Photochem Photobiol ; 99(5): 1293-1298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36533876

RESUMEN

"Far UV-C" is an effective disinfection method that can be deployed in occupied areas. Commercially available Krypton Chloride (KrCl*) excimer lamps filtered to emit at 222 nm are effective in disinfecting pathogens and safe for human exposure up to an allowable threshold exposure, which is much longer than for conventional UV lamps emitting at 254 nm. Laboratory and controlled field testing of a filtered KrCl* excimer lamp for disinfection of a virus suspended in a thin film aqueous solution in an occupied office setting was conducted. Complete inactivation of almost 6 log (99.9999%) of Phi6 bacteriophage virus was achieved in ~20 min of exposure time in a field setting, equivalent to a dose of about 10 mJ cm-2 . The Phi6 inactivation rate constant for the field test results were not statistically different from laboratory values (P > 0.05, paired t-test). When positioned at 1 m distance from possible human exposure, this device can be used safely for almost 4.5 h of continuous direct exposure without any acute or long-term adverse health effects. This study illustrates the applicability and deployment of Far UV-C for pathogen reduction and can help in decision making for implementation of Far UV-C for disinfection in human-occupied environments.

8.
Photochem Photobiol ; 99(3): 975-982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36129750

RESUMEN

Germicidal ultraviolet (UV) devices have been widely used for pathogen disinfection in water, air, and on food and surfaces. Emerging UV technologies, like the krypton chloride (KrCl*) excimer emitting at 222 nm, are rapidly gaining popularity due to their minimal adverse effects on skin and eyes compared with conventional UV lamps emitting at 254 nm, opening opportunities for UV disinfection in occupied public spaces. In this study, inactivation of seven bacteria and five viruses, including waterborne, foodborne and respiratory pathogens, was determined in a thin-film aqueous solution using a filtered KrCl* excimer emitting primarily at 222 nm. Our results show that the KrCl* excimer can effectively inactivate all tested bacteria and viruses, with most microorganisms achieving more than 4-log (99.99%) reduction with a UV dose of 10 mJ cm-2 . Compared with conventional UV lamps, the KrCl* excimer lamp exhibited better disinfection performance for viruses but was slightly less effective for bacteria. The relationships between UV sensitivities at 222 and 254 nm for bacteria and viruses were evaluated using regression analysis, resulting in factors that could be used to estimate the KrCl* excimer disinfection performance from well-documented UV kinetics using conventional 254 nm UV lamps. This study provides fundamental information for pathogen disinfection when employing KrCl* excimers.


Asunto(s)
Bacterias , Desinfección , Desinfección/métodos , Bacterias/efectos de la radiación , Agua , Rayos Ultravioleta , Criptón
9.
Sci Rep ; 12(1): 20493, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481924

RESUMEN

Aerosols can transmit infectious diseases including SARS-CoV-2, influenza and norovirus. Flushed toilets emit aerosols that spread pathogens contained in feces, but little is known about the spatiotemporal evolution of these plumes or the velocity fields that transport them. Using laser light to illuminate ejected aerosols we quantify the kinematics of plumes emanating from a commercial flushometer-type toilet, and use the motion of aerosol particles to compute velocity fields of the associated flow. The toilet flush produces a strong chaotic jet with velocities exceeding 2 m/s; this jet transports aerosols to heights reaching 1.5 m within 8 seconds of initiating a flush. Quantifying toilet plumes and associated flow velocities provides a foundation for future design strategies to mitigate plume formation or to disinfect pathogens within it.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2
10.
Environ Sci Technol ; 56(23): 17364-17374, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36417895

RESUMEN

Reliable water service delivery continues to be a complex global issue that is particularly challenging in rural communities. Despite billions of dollars of infrastructure interventions, sustainable water services remain out of reach for millions of people. Professionalized maintenance services have emerged as a service provision strategy to supplement the community-based rural water management approach. This study applies system dynamics modeling to assess the potential impact of scaling up professionalized maintenance services on piped water systems in Kitui County, Kenya. The study results show that over a 10 year simulation, calibrated with 21 months of empirical data and based on a range of key assumptions, delivery of professionalized maintenance services across the county may increase countywide functionality rates from 54% to over 83%, leading to a 67% increase in water production. Furthermore, the increase in preventive maintenance activities and proactive repairs can lead to less frequent major breakdowns and reduction in county government spending on major repairs by over 60%. However, current service fee income from communities accounts for 8% of the total cost of service, necessitating substantial sustained external financing or government subsidies to be financially viable at scale.


Asunto(s)
Renta , Población Rural , Humanos , Kenia , Reproducibilidad de los Resultados , Agua
11.
J Occup Environ Hyg ; 19(9): 524-537, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35816423

RESUMEN

The emergence of COVID-19 and its corresponding public health burden has prompted industries to rapidly implement traditional and novel control strategies to mitigate the likelihood of SARS-CoV-2 transmission, generating a surge of interest and application of ultraviolet germicidal irradiation (UVGI) sources as disinfection systems. With this increased attention the need to evaluate the efficacy and safety of these types of devices is paramount. A field study of the early implementation of UVGI devices was conducted at the Space Needle located in Seattle, Washington. Six devices were evaluated, including four low-pressure (LP) mercury-vapor lamp devices for air and surface sanitation not designed for human exposure and two krypton chloride (KrCl*) excimer lamp devices to be operated on and around humans. Emission spectra and ultraviolet (UV) irradiance at different locations from the UV devices were measured and germicidal effectiveness against SARS-CoV-2 was estimated. The human safety of KrCl* excimer devices was also evaluated based on measured irradiance and estimated exposure durations. Our results show all LP devices emitted UV radiation primarily at 254 nm as expected. Both KrCl* excimers emitted far UVC irradiation at 222 nm as advertised but also emitted at longer, more hazardous wavelengths (228 to 262 nm). All LP devices emitted strong UVC irradiance, which was estimated to achieve three log reduction of SARS-CoV-2 within 10 sec of exposure at reasonable working distances. KrCl* excimers, however, emitted much lower irradiance than needed for effective disinfection of SARS-CoV-2 (>90% inactivation) within the typical exposure times. UV fluence from KrCl* excimer devices for employees was below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) under the reported device usage and work shifts. However, photosensitive individuals, human susceptibility, or exposure to multiple UV sources throughout a worker's day, were not accounted for in this study. Caution should be used when determining the acceptability of UV exposure to workers in this occupational setting and future work should focus on UVGI sources in public settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Desinfección/métodos , Humanos , Salud Pública , Rayos Ultravioleta
12.
Water Res ; 218: 118496, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35525030

RESUMEN

Adenoviruses are known to be one of the most resistant viruses to UV disinfection. This study determined the inactivation kinetics of adenovirus freshly isolated from sewage samples, and compared the results with reference adenovirus stocks grown in the laboratory. Human adenoviruses were isolated from sewage samples using the HEK 293 cell line. Inactivation kinetics for UV irradiation was determined for monochromatic low pressure (LP) mercury UV lamp (254 nm) and polychromatic medium pressure (MP) mercury UV lamp for each sewage isolate. Eleven (11) isolates were obtained from nine (9) different sewage samples with most isolates belonging to the enteric adenovirus group, specifically adenovirus 41. The average dose required for 4 log inactivation using LP UV lamps for sewage isolates (220 mJ/cm2) was not significantly different (p > 0.1) from the average dose reported for lab-grown enteric adenovirus (179.6 mJ/cm2). Interestingly, the average dose required for 4 log inactivation using MP UV lamps was significantly higher (p = 0.004) for sewage isolates (124 mJ/cm2) when compared to the average dose reported for laboratory stocks of adenovirus 40 and 41 (71 mJ/cm2). Viral capsid analysis using the propidium monoazide (PMA)-qPCR method showed that adenovirus isolates from group F were less affected by exposure to MP UV Lamps than adenoviruses from group D and C. Adenovirus isolates obtained from sewage samples showed greater resistance to UV irradiation compared to laboratory grown strains, although required doses for MP UV were still considerably lower than LP UV. These data suggest that the required fluence for inactivation of adenoviruses in real-world waters may be higher than previously understood.


Asunto(s)
Adenovirus Humanos , Mercurio , Adenoviridae , Desinfección/métodos , Células HEK293 , Humanos , Aguas del Alcantarillado , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
13.
Water Res ; 217: 118379, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429876

RESUMEN

Opportunistic pathogens (OPs), such as Pseudomonas spp., Legionella spp., and mycobacteria, have been detected in biofilms in drinking water distribution systems and water storage tanks and pose potential risks to finished drinking water quality and safety. Emerging UV technologies, such as UV light emitting diodes (LEDs) and krypton chloride (KrCl*) excimers, could provide an alternative to chemical-based secondary disinfection (i.e., chlorine or chloramines) for controlling biofilm-bound OPs. UV systems offer long lifetimes, ability to select wavelength, small size with high power density, and limited-to-no disinfection by-product formation. In this study, inactivation of biofilm-bound Pseudomonas aeruginosa cells across different maturities was investigated using five UVC devices with different peak emission wavelengths, including a KrCl* excimer (222 nm), a low pressure mercury vapor lamp (254 nm), and three UV LEDs (260 nm, 270 nm, and 282 nm). The UV transmittance and absorbance through the biofilm structure was also documented for the first time using a unique approach. Our results show all UVC devices can inactivate biofilm-bound P. aeruginosa cells up to a point, among which the UV LED with peak emission at 270 nm provided the best disinfection performance. UV sensitivities of biofilm-bound cells decreased with biofilm maturity and while initial rates of inactivation were high, no more than 1.5-2.5 log reduction was possible. Re-suspended biofilm bacteria in aqueous solution were highly sensitive to UV, reaching greater than 6 log reduction. UV shielding by biofilm constituents was observed and was likely one of the reasons for UV resistance but did not fully explain the difference in UV sensitivity between biofilm-bound cells versus planktonic cells. This study improves upon fundamental knowledge and provides guidance for innovative designs using emerging UV technologies for biofilm and pathogen control in water distribution systems.


Asunto(s)
Agua Potable , Purificación del Agua , Biopelículas , Cloro , Desinfección/métodos , Rayos Ultravioleta , Purificación del Agua/métodos
14.
Appl Environ Microbiol ; 87(22): e0153221, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34495736

RESUMEN

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.


Asunto(s)
Desinfección/métodos , SARS-CoV-2/efectos de la radiación , Inactivación de Virus/efectos de la radiación , Animales , Bacteriófago phi 6/efectos de la radiación , COVID-19/prevención & control , COVID-19/transmisión , Coronavirus Humano 229E/efectos de la radiación , Desinfección/instrumentación , Humanos , Ratones , Virus de la Hepatitis Murina/efectos de la radiación , Rayos Ultravioleta
15.
Environ Eng Sci ; 38(5): 355-366, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34079208

RESUMEN

Household water, sanitation and hygiene (WASH) practices in remote, rural, and unpiped communities are likely to impact exposure to pathogens beyond the fecal-oral transmission routes that are typically prioritized in WASH interventions. We studied 43 homes in two remote, rural, unpiped communities in Alaska to evaluate seasonal water haul, water sources, water quality, and water reuse, as well as greywater and human waste disposal over 1 year. Hauled quantities of water reportedly ranged from 3.0 to 5.4 gallons per capita per day (gpcd) depending on the community and season. Natural, untreated water sources contributed 0.5-1.1 gpcd to household water availability. Reported quantities of water hauled were significantly correlated with total water storage capacity in the home. Total coliforms were detected in 30-60% of stored household water samples from treated and untreated sources, and total coliform counts were significantly higher in specific sources and during specific seasons. Exposure to pathogens during periods of low water access, from untreated water reuse, from greywater disposal and from human waste disposal are important pathways of disease transmission in these remote, rural, unpiped communities. We discuss intermediate steps that can be taken at the household and community levels to interrupt exposure pathways before piped infrastructure is installed. This model of examining specific household practices to determine transmission routes can be applied to other remote communities or unique conditions to aid in the recommendation of targeted WASH interventions.

16.
Environ Sci Technol Lett ; 8(5): 425-430, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566360

RESUMEN

Ultraviolet (UV) devices emitting UVC irradiation (200-280 nm) have proven to be effective for virus disinfection, especially on surfaces and in air, due to their rapid effectiveness and limited to no material corrosion. Numerous studies of UV-induced inactivation focused on nonenveloped viruses. Little is known about UVC action on enveloped viruses across UVC wavelengths. In this study, we determined inactivation efficiencies of two coronaviruses (ssRNA) and an enveloped dsRNA bacteriophage surrogate in buffered aqueous solution (pH 7.4) using five commonly available UVC devices that uniquely emit light at different wavelengths spanning 222 nm emitting krypton chloride (KrCl*) excimers to 282 nm emitting UVC LEDs. Our results show that enveloped viruses can be effectively inactivated using UVC devices, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate) for all three enveloped viruses. The coronaviruses exhibited similar sensitivities to UV irradiation across the UVC range, whereas the bacteriophage surrogate was much more resistant and exhibited significantly higher sensitivity to the Far UVC (<230 nm) irradiation. This study provides necessary information and guidance for using UVC devices for enveloped virus disinfection, which may help control virus transmission in public spaces during the ongoing COVID-19 pandemic and beyond.

17.
Sci Total Environ ; 758: 143622, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33229099

RESUMEN

Reuse of hydraulic fracturing wastewaters depends on effective tailored treatment to prepare the water for the intended end use. Aerobic biological treatment of hydraulic fracturing produced water was examined to degrade dissolved organic carbon (DOC) and polyethylene glycols (PEGs). Biological treatment experiments of three produced water samples with DOC concentrations ranging from 22 to 420 mg/L and total dissolved solids (TDS) levels ranging from 26 to 157 g/L were conducted in 48-240 h batches. Samples were not pretreated to remove suspended solids and were inoculated with activated sludge and acclimated over several weeks. Results show that between 50% and 80% of DOC was removed in 12-24 h but a sizeable portion, on a mass basis, remained in the samples with higher DOC concentrations. PEGs were also shown to readily biodegrade into singly- and doubly-carboxylated metabolites, but were not shown to degrade past that point, leading to accumulation of PEG-dicarboxylates (PEG-diCs) in the batch reactors. Possible explanations include residence times that were too long, resulting in starved microbial populations (and thus, a stopping of PEG degradation) or the presence of other ethoxylated additives that degraded into PEGs and PEG-diCs and fed this accumulation. This work demonstrates that a well-acclimated microbial culture is capable of degrading a large portion of DOC in hydraulic fracturing wastewaters across a wide spectrum of TDS concentrations, indicating that biological treatment is a viable option for enabling reuse of produced water.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Salinidad , Aguas del Alcantarillado , Aguas Residuales , Contaminantes Químicos del Agua/análisis
18.
J Chromatogr A ; 1622: 461094, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32362359

RESUMEN

This work describes the development of a solid-phase extraction method capable of detecting common fracturing fluid additives in flowback and produced water with mass spectrometry. Dissolved organic carbon (DOC) was used as a bulk measurement to investigate the retentive capacity of seven sorbents and to determine a loading volume. Conductivity was used to determine rinse volume. Based on this, four sorbents (HLB, PPL, Carbon, and C-18) were selected for further investigation of their ability to recover common fluid additives. Enrichment factors were calculated for poly(ethylene) glycols (PEGs), PEG-amines, and their metabolites PEG-carboxylates and PEG-carboxylate-amines, poly(propylene) glycols (PPGs), and linear alkyl ethoxylates (LAEs). The sorbent HLB gave the greatest enrichment for all of these compounds, with an average of 8.0× for PEGs, 11.9× for PEG-amines, 4.9× for PEG-carboxylates, and 21.6× for LAEs, though enrichment was highly dependent on sample composition. The effect was more pronounced for higher molecular weight compounds and enabled detection of some compounds in saltier samples. Then, HLB was used to recover these additives from 1:200 and 1:1000 dilutions in groundwater, illustrating the ability of solid-phase extraction to detect these compounds at low levels (<100 ppb) and highlighting the utility of desalting. This method was used to identify ethoxylated amines in flowback and produced waters from across the country.


Asunto(s)
Técnicas de Química Analítica , Fracking Hidráulico , Extracción en Fase Sólida , Aguas Residuales , Contaminantes Químicos del Agua , Carbono/análisis , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Agua Subterránea/química , Espectrometría de Masas , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
19.
Water Res ; 170: 115321, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31877555

RESUMEN

Absorbance- and fluorescence-based optical parameters are commonly used as surrogates in engineered systems, but there is no systematic approach for selecting robust parameters. This study develops a methodology that is applied to a case study of differentiating wastewater effluent organic matter from naturally-derived organic matter. The methodology defines criteria to identify optical parameters that could detect statistically significant compositional differences in organic matter, independent of organic matter concentration, and measure fluorescence-based parameters with low susceptibility to inner filter effects. The criteria were applied to 26 parameters that were measured for 11 pairs of source water and conventionally-treated wastewater samples collected from sites with varied spatial and temporal conditions. Only two parameters, apparent fluorescence quantum yield measured at excitation 370 nm and fluorescence peak ratio A:T, met the criteria across all sites. These results demonstrate and encourage an objective and robust process for selecting optical surrogates for organic matter characterization.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua
20.
Water Res ; 165: 114965, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31437635

RESUMEN

Ultraviolet light emitting diodes (UV LEDs) have increasing applications in the inactivation of microorganisms in water, air, food, and on surfaces. System designers currently have metrics for comparison of the microbial and energy efficiency of UV LEDs, but these have not included a time component. Without including the time efficiency of a UV LED, neither the fluence-basis nor the electrical-basis of comparison clarifies which UV LED wavelength and operating condition is optimal for a design space. This research explores microbial inactivation of UV LEDs at various wavelengths under continuous and pulsing operating conditions. Planktonic microorganisms of relevance to public water supplies and UV system design are included: E. coli and MS-2 for benchmarking against previous studies and P. aeruginosa which has not been studied in pulsed systems or for continuous and combined UV LED wavelengths. Pulsing UV LEDs at various duty rates (percent of cycle spent on) and frequencies (number of cycles per second) does not result in a statistically significant disinfection performance difference over the continuous light operation at that respective wavelength. UV LEDs emitting at peak wavelengths corresponding to the peak action spectrum of a microorganism are optimal on a fluence-basis, but these are typically less electrically efficient UV LEDs. System designers can compare the normalized microbial inactivation, electrical, and time efficiencies (ENETO) of various UV LEDs; ENETO ≥1 for a pulsing condition ensures equal or improved efficiency compared to the continuous light condition while expanding the lifetime of the UV LED and decreasing the size or cost of associated power supplies.


Asunto(s)
Microbiología del Agua , Purificación del Agua , Desinfección , Escherichia coli , Viabilidad Microbiana , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...