Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38906044

RESUMEN

Elite performing exercise requires an intricate modulation of the blood pressure to support the working muscles with oxygen. We have previously identified a genomic regulatory module that associates with differences in blood pressures of importance for elite performance in racehorses. This study aimed to determine the effect of the regulatory module on the protein repertoire. We sampled plasma from 12 Coldblooded trotters divided into two endothelial regulatory module haplotype groups, a sub-elite performing haplotype (SPH) and an elite performing haplotype (EPH), each at rest and exercise. The haplotype groups and their interaction were interrogated in two analyses, i) individual paired ratio analysis for identifying differentially abundant proteins of exercise (DAPE) and interaction (DAPI) between haplotype and exercise, and ii) unpaired ratio analysis for identifying differentially abundant protein of haplotype (DAPH). The proteomics analyses revealed a widespread change in plasma protein content during exercise, with a decreased tendency in protein abundance that is mainly related to lung function, tissue fluids, metabolism, calcium ion pathway and cellular energy metabolism. Furthermore, we provide the first investigation of the proteome variation due to the interaction between exercise and related blood pressure haplotypes, which this difference was related to a faster switch to the lipoprotein and lipid metabolism during exercise for EPH. The molecular signatures identified in the present study contribute to an improved understanding of exercise-related blood pressure regulation.

2.
PLoS Genet ; 20(6): e1011285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885195

RESUMEN

The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.


Asunto(s)
Rendimiento Atlético , Presión Sanguínea , Haplotipos , Caballos/genética , Animales , Humanos , Presión Sanguínea/genética , Rendimiento Atlético/fisiología , Haplotipos/genética , Endotelina-3/genética , Polimorfismo de Nucleótido Simple , Alelos , Masculino , Células Endoteliales/metabolismo
3.
Genet Sel Evol ; 55(1): 89, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082412

RESUMEN

BACKGROUND: In domesticated animals, many important traits are complex and regulated by a large number of genes, genetic interactions, and environmental influences. The ability of Icelandic horses to perform the gait 'pace' is largely influenced by a single mutation in the DMRT3 gene, but genetic modifiers likely exist. The aim of this study was to identify novel genetic factors that influence pacing ability and quality of the gait through a genome-wide association study (GWAS) and correlate new findings to previously identified quantitative trait loci (QTL) and mutations. RESULTS: Three hundred and seventy-two Icelandic horses were genotyped with the 670 K+ Axiom Equine Genotyping Array, of which 362 had gait scores from breeding field tests. A GWAS revealed several SNPs on Equus caballus chromosomes (ECA) 4, 9, and 20 that were associated (p < 1.0 × 10-5) with the breeding field test score for pace. The two novel QTL on ECA4 and 9 were located within the RELN and STAU2 genes, respectively, which have previously been associated with locomotor behavior in mice. Haplotypes were identified and the most frequent one for each of these two QTL had a large favorable effect on pace score. The second most frequent haplotype for the RELN gene was positively correlated with scores for tölt, trot, gallop, and canter. Similarly, the second most frequent haplotype for the STAU2 gene had favorable effects on scores for trot and gallop. Different genotype ratios of the haplotypes in the RELN and STAU2 genes were also observed in groups of horses with different levels of pacing ability. Furthermore, interactions (p < 0.05) were detected for the QTL in the RELN and STAU2 genes with the DMRT3 gene. The novel QTL on ECA4, 9, and 20, along with the effects of the DMRT3 variant, were estimated to account jointly for 27.4% of the phenotypic variance of the gait pace. CONCLUSIONS: Our findings provide valuable information about the genetic architecture of pace beyond the contribution of the DMRT3 gene and indicate genetic interactions that contribute to the complexity of this trait. Further investigation is needed to fully understand the underlying genetic factors and interactions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Factores de Transcripción , Caballos/genética , Animales , Ratones , Islandia , Factores de Transcripción/genética , Genotipo , Marcha/genética , Polimorfismo de Nucleótido Simple
4.
Sci Rep ; 13(1): 8954, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268661

RESUMEN

The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.


Asunto(s)
Animales Salvajes , Evolución Biológica , Masculino , Animales , Caballos/genética , Filogenia , Animales Salvajes/genética , Cromosoma Y/genética , Genoma , Haplotipos , Variación Genética , ADN Mitocondrial/genética
5.
Heredity (Edinb) ; 131(2): 96-108, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37308718

RESUMEN

Indigenous Iranian horse breeds were evolutionarily affected by natural and artificial selection in distinct phylogeographic clades, which shaped their genomes in several unique ways. The aims of this study were to evaluate the genetic diversity and genomewide selection signatures in four indigenous Iranian horse breeds. We evaluated 169 horses from Caspian (n = 21), Turkmen (n = 29), Kurdish (n = 67), and Persian Arabian (n = 52) populations, using genomewide genotyping data. The contemporary effective population sizes were 59, 98, 102, and 113 for Turkmen, Caspian, Persian Arabian, and Kurdish breeds, respectively. By analysis of the population genetic structure, we classified the north breeds (Caspian and Turkmen) and west/southwest breeds (Persian Arabian and Kurdish) into two phylogeographic clades reflecting their geographic origin. Using the de-correlated composite of multiple selection signal statistics based on pairwise comparisons, we detected a different number of significant SNPs under putative selection from 13 to 28 for the six pairwise comparisons (FDR < 0.05). The identified SNPs under putative selection coincided with genes previously associated with known QTLs for morphological, adaptation, and fitness traits. Our results showed HMGA2 and LLPH as strong candidate genes for height variation between Caspian horses with a small size and the other studied breeds with a medium size. Using the results of studies on human height retrieved from the GWAS catalog, we suggested 38 new putative candidate genes under selection. These results provide a genomewide map of selection signatures in the studied breeds, which represent valuable information for formulating genetic conservation and improved breeding strategies for the breeds.


Asunto(s)
Variación Genética , Genoma , Humanos , Animales , Caballos/genética , Irán , Fenotipo , Filogeografía , Polimorfismo de Nucleótido Simple , Selección Genética
6.
J Equine Vet Sci ; 111: 103870, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35074400

RESUMEN

Osteochondrosis (OC) is an important skeletal disease causing profound welfare concerns in horses. Although numerous studies have explored the genetics underlying OC in various breeds, the Belgian Warmblood (BW) remains unstudied despite having a concerning prevalence of 32.0%. As a result, this study aimed to conduct genome-wide association (GWA) analyses to identify candidate variants associated with OC in BWs. To achieve this, blood samples and radiographs were collected from 407 Belgian Warmbloods registered to one of two BW studbooks (Belgisch Warmbloedpaard and Zangersheide), and genotyping was performed using the 670K Axiom Equine Genotyping Array. GWA analyses using a principle component approach were then performed on OC status (OCS; presence or absence of OC at any joint), hock OC status (HOC) and stifle OC status (SOC). These analyses yielded significantly associated (P < .01) SNPs on Equus caballus chromosome (ECA) 3, ECA 12, and ECA 18 for OCS; however, no single nucleotide polymorphisms (SNPs) reached significance for HOC or SOC. Subsequent analysis of candidate genes within 500 kilobases of the significant SNPs revealed functions broadly related to cell differentiation and chondrocyte development. While this study represents another step forward in uncovering variants and biological pathways associated with OC, additional studies are needed to validate the newly identified candidate SNPs for OC in BWs. Further studies of OC in BWs, as well as other breeds, are critical in our efforts to fully understand the disease's etiopathogenesis and ultimately provide breeding programs better equipped to improve horse health and well-being.


Asunto(s)
Enfermedades de los Caballos , Osteocondrosis , Animales , Bélgica , Diferenciación Celular , Condrocitos/patología , Estudio de Asociación del Genoma Completo/veterinaria , Enfermedades de los Caballos/genética , Caballos/genética , Osteocondrosis/genética , Osteocondrosis/veterinaria
7.
Sci Rep ; 12(1): 515, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017609

RESUMEN

Since the first Spanish settlers brought horses to America centuries ago, several local varieties and breeds have been established in the New World. These were generally a consequence of the admixture of the different breeds arriving from Europe. In some instances, local horses have been selectively bred for specific traits, such as appearance, endurance, strength, and gait. We looked at the genetics of two breeds, the Puerto Rican Non-Purebred (PRNPB) (also known as the "Criollo") horses and the Puerto Rican Paso Fino (PRPF), from the Caribbean Island of Puerto Rico. While it is reasonable to assume that there was a historic connection between the two, the genetic link between them has never been established. In our study, we started by looking at the genetic ancestry and diversity of current Puerto Rican horse populations using a 668 bp fragment of the mitochondrial DNA D-loop (HVR1) in 200 horses from 27 locations on the island. We then genotyped all 200 horses in our sample for the "gait-keeper" DMRT3 mutant allele previously associated with the paso gait especially cherished in this island breed. We also genotyped a subset of 24 samples with the Illumina Neogen Equine Community genome-wide array (65,000 SNPs). This data was further combined with the publicly available PRPF genomes from other studies. Our analysis show an undeniable genetic connection between the two varieties in Puerto Rico, consistent with the hypothesis that PRNPB horses represent the descendants of the original genetic pool, a mix of horses imported from the Iberian Peninsula and elsewhere in Europe. Some of the original founders of PRNRB population must have carried the "gait-keeper" DMRT3 allele upon arrival to the island. From this admixture, the desired traits were selected by the local people over the span of centuries. We propose that the frequency of the mutant "gait-keeper" allele originally increased in the local horses due to the selection for the smooth ride and other characters, long before the PRPF breed was established. To support this hypothesis, we demonstrate that PRNPB horses, and not the purebred PRPF, carry a signature of selection in the genomic region containing the DMRT3 locus to this day. The lack of the detectable signature of selection associated with the DMRT3 in the PRPF would be expected if this native breed was originally derived from the genetic pool of PRNPB horses established earlier and most of the founders already had the mutant allele. Consequently, selection specific to PRPF later focused on allels in other genes (including CHRM5, CYP2E1, MYH7, SRSF1, PAM, PRN and others) that have not been previously associated with the prized paso gait phenotype in Puerto Rico or anywhere else.


Asunto(s)
Caballos , Animales
8.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614000

RESUMEN

Gene expression differences can assist in characterizing important underlying genetic mechanisms between different phenotypic traits. However, when population-dense tissues are studied, the signals from scarce populations are diluted. Therefore, appropriately choosing a sample collection method that enriches a particular type of effector cells might yield more specific results. To address this issue, we performed a polyA-selected RNA-seq experiment of domestic horse (Equus ferus caballus) plucked-hair samples and skin biopsies. Then, we layered the horse gene abundance results against cell type-specific marker genes generated from a scRNA-seq supported with spatial mapping of laboratory mouse (Mus musculus) skin to identify the captured populations. The hair-plucking and skin-biopsy sample-collection methods yielded comparable quality and quantity of RNA-seq results. Keratin-related genes, such as KRT84 and KRT75, were among the genes that showed higher abundance in plucked hairs, while genes involved in cellular processes and enzymatic activities, such as MGST1, had higher abundance in skin biopsies. We found an enrichment of hair-follicle keratinocytes in plucked hairs, but detected an enrichment of other populations, including epidermis keratinocytes, in skin biopsies. In mammalian models, biopsies are often the method of choice for a plethora of gene expression studies and to our knowledge, this is a novel study that compares the cell-type enrichment between the non-invasive hair-plucking and the invasive skin-biopsy sample-collection methods. Here, we show that the non-invasive and ethically uncontroversial plucked-hair method is recommended depending on the research question. In conclusion, our study will allow downstream -omics approaches to better understand integumentary conditions in both health and disease in horses as well as other mammals.


Asunto(s)
Folículo Piloso , Cabello , Animales , Ratones , Epidermis , Expresión Génica , Folículo Piloso/metabolismo , Caballos , Queratinocitos/metabolismo
9.
BMC Vet Res ; 17(1): 336, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696794

RESUMEN

BACKGROUND: In horses, the autoimmune disease vitiligo is characterized by the loss of melanocytes and results in patchy depigmentation of the skin around the eyes, muzzle and the perianal region. Vitiligo-like depigmentation occurs predominantly in horses displaying the grey coat colour and is observed at a prevalence level of 26.0-67.0% in grey horses compared with only 0.8-3.5% in non-grey horses. While the polygenetic background of this complex disease is well documented in humans, the underlying candidate genes for this skin disorder in horses remain unknown. In this study we aim to perform a genome-wide association study (GWAS) for identifying putative candidate loci for vitiligo-like depigmentation in horses. METHODS: In the current study, we performed a GWAS analysis using high-density 670 k single nucleotide polymorphism (SNP) data from 152 Lipizzan and 104 Noriker horses, which were phenotyped for vitiligo-like depigmentation by visual inspection. After quality control 376,219 SNPs remained for analyses, the genome-wide Bonferroni corrected significance level was p < 1.33e-7. RESULTS: We identified seven candidate genes on four chromosomes (ECA1, ECA13, ECA17, ECA20) putatively involved in vitiligo pathogenesis in grey horses. The highlighted genes PHF11, SETDB2, CARHSP1 and LITAFD, are associated with the innate immune system, while the genes RCBTB1, LITAFD, NUBPL, PTP4A1, play a role in tumor suppression and metastasis. The antagonistic pathogenesis of vitiligo in relation to cancer specific enhanced cell motility and/or metastasis on typical melanoma predilection sites underlines a plausible involvement of RCBTB1, LITAFD, NUBPL, and PTP4A1. CONCLUSIONS: The proposed candidate genes for equine vitiligo-like depigmentation, indicate an antagonistic relation between vitiligo and tumor metastasis in a horse population with higher incidence of melanoma. Further replication and expression studies should lead to a better understanding of this skin disorder in horses.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Enfermedades de los Caballos/genética , Trastornos de la Pigmentación/veterinaria , Animales , Predisposición Genética a la Enfermedad , Genotipo , Enfermedades de los Caballos/patología , Caballos , Inmunidad Innata/genética , Melanoma/genética , Melanoma/patología , Melanoma/veterinaria , Metástasis de la Neoplasia/genética , Trastornos de la Pigmentación/genética , Polimorfismo de Nucleótido Simple , Prevalencia
11.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853519

RESUMEN

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Asunto(s)
Marcha , Caballos/genética , Sitios de Carácter Cuantitativo , Animales , Marcha/genética , Estudio de Asociación del Genoma Completo , Fenotipo
12.
Physiol Behav ; 228: 113218, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131744

RESUMEN

Infrared thermography (IRT) is a popular technology used for the detection of thermal changes given its non-invasive nature and lack of direct contact with the individual. Accordingly, the maximal eye temperature (MaxET) measured with IRT has been extensively applied in equine research. However, there is little information available about the potential limitations of the MaxET in field studies. Thus, the aims of this study were to 1) quantify the individual variation of MaxET in field conditions and the effects of individual, breed, body size (height at withers), eye side, sex and age, 2) determine the effects of environment and operator, and 3) explore the relationship between MaxET and rectal temperature (RT) at rest. To accomplish these aims, 791 MaxET measures from 32 horses were collected in Sweden in five different months and five farms over a period of 12 months. There was an effect of individual on IRT (P < .05) and individual MaxET varied from 29.4 to 37.6 °C. IRT was also affected (P < .05) by breed and sex (maximal difference 1.1 °C and 0.3 °C, respectively) but not by eye side, age and height at withers. There were significant effects of month and farm (maximal differences; 2.4 and 2.3 °C, respectively), between outdoor and indoor measurements (0.8 °C) and also between operators (0.2 °C). There were no correlations between MaxET and RT. These results demonstrate that in horses observed at rest in their home environment, MaxET is affected by endogenous (sex and breed) and environmental factors (farm, location and month of the year) and shows no relationship to RT. We strongly suggest that IRT technology should be used with great caution in field studies and only under conditions where these factors can be accurately accounted for.


Asunto(s)
Temperatura Corporal , Termografía , Animales , Ojo , Caballos , Rayos Infrarrojos , Suecia , Temperatura
13.
Sci Rep ; 10(1): 13153, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753654

RESUMEN

Domestic animal populations are often characterised by high rates of inbreeding and low effective population sizes due to selective breeding practices. These practices can result in otherwise rare recessive deleterious alleles drifting to high frequencies, resulting in reduced fertility rates. This study aimed to identify potential recessive lethal haplotypes in the Thoroughbred horse breed, a closed population that has been selectively bred for racing performance. In this study, we identified a haplotype in the LY49B gene that shows strong evidence of being homozygous lethal, despite having high frequencies of heterozygotes in Thoroughbreds and other domestic horse breeds. Variant analysis of whole-genome sequence data identified two SNPs in the 3'UTR of the LY49B gene that may result in loss of function. Analysis of transcriptomic data from equine embryonic tissue revealed that LY49B is expressed in the trophoblast during placentation stage of development. These findings suggest that LY49B may have an essential, but as yet unknown function in the implantation stage of equine development. Further investigation of this region may allow for the development of a genetic test to improve fertility rates in horse populations. Identification of other lethal variants could assist in improving natural levels of fertility in horse populations.


Asunto(s)
Regiones no Traducidas 3' , Cruzamiento , Haplotipos , Caballos/genética , Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Polimorfismo de Nucleótido Simple , Animales , Femenino , Fertilidad/genética , Estudio de Asociación del Genoma Completo , Masculino
14.
Vet Clin North Am Equine Pract ; 36(2): 323-339, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32534850

RESUMEN

Equine skin diseases are common, causing increased costs and reduced welfare of affected horses.Genetic testing, if available, can complement early detection, disease diagnosis, and clinical treatment and offers horse breeders the possibility to rule out carrier status. The mechanisms of complex disease can be investigated by using the latest state-of-the-art genomic technologies. Genome-based strategies may also serve as an efficient and cost-effective strategy for the management of the disease severity levels, with particular interest in complex traits such as insect bite hypersensitivity, chronic progressive lymphedema, and melanoma.


Asunto(s)
Enfermedades de los Caballos/genética , Enfermedades de la Piel/veterinaria , Animales , Caballos , Enfermedades de la Piel/genética
15.
Anim Sci J ; 91(1): e13380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32363779

RESUMEN

There is a lack of research on the benefits and risks of shoeing conditions in harness racing. Thus, our objectives were to: (a) investigate whether velocity times (VT; s/km) are affected by racing unshod (N = 76,932 records on 5,247 horses); (b) determine the potential risks of galloping, being penalized, and disqualification when competing unshod (N = 111,755 records on 6,423 horses); and (c) identify additional environmental factors that affect VT and risks. VT was found to be significantly influenced by shoeing condition (e.g., unshod, shod front, shod hind, or fully shod), but also by sex, age, season, track, track condition, start method, start position, distance, and driver-horse performance level (p < 2e-16). The risks of galloping and disqualification were significantly influenced by shoeing condition, sex, age, season, track, start method, start position, or driver-horse performance level (p ≤ .05). Horses racing unshod had 0.7 s/km lower VT than fully shod horses and showed better performance when racing on neutral tracks during the late summer than horses with other shoeing conditions during the same period. However, racing unshod increased the relative risks of galloping and disqualification by 15%-35% in all seasons. Horses shod only on the hind hooves showed better performance than fully shod horses, without higher risks associated with competing unshod.


Asunto(s)
Caballos/fisiología , Medición de Riesgo/métodos , Carrera , Zapatos , Deportes , Animales , Estudios de Cohortes , Femenino , Pezuñas y Garras/fisiología , Estudios Longitudinales , Masculino , Estaciones del Año
16.
J Equine Vet Sci ; 88: 102950, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32303326

RESUMEN

The roan coat color in horses is characterized by dispersed white hair and dark points. This phenotype segregates in a broad range of horse breeds, while the underlying genetic background is still unknown. Previous studies mapped the roan locus to the KIT gene on equine chromosome 3 (ECA3). However, this association could not be validated across different horse breeds. Performing a genome-wide association analysis (GWAS) in Noriker horses, we identified a single nucleotide polymorphism (SNP) (ECA3:g.79,543.439 A > G) in the intron 17 of the KIT gene. The G -allele of the top associated SNP was present in other roan horses, namely Quarter Horse, Murgese, Slovenian, and Belgian draught horse, while it was absent in a panel of 15 breeds, including 657 non-roan horses. In further 379 gray Lipizzan horses, eight animals exhibited a heterozygous genotype (A/G). Comparative whole-genome sequence analysis of the KIT region revealed two deletions in the downstream region (ECA3:79,533,217_79,533,224delTCGTCTTC; ECA3:79,533,282_79,533,285delTTCT) and a 3 bp deletion combined with 17 bp insertion in intron 20 of KIT (ECA3:79,588,128_79,588,130delinsTTATCTCTATAGTAGTT). Within the Noriker sample, these loci were in complete linkage disequilibrium (LD) with the identified top SNP. Based upon pedigree information and historical records, we were able to trace back the genetic origin of roan coat color to a baroque gene pool. Furthermore, our data suggest allelic heterogeneity and the existence of additional roan alleles in ponies and breeds related to the English Thoroughbred. In order to study the roan phenotype segregating in those breeds, further association and verification studies are required.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Alelos , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Color del Cabello/genética , Caballos/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
17.
Genes (Basel) ; 11(3)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120906

RESUMEN

Disorders of sex development (DSD) and reproduction are not uncommon among horses, though knowledge about their molecular causes is sparse. Here we characterized a ~200 kb homozygous deletion in chromosome 29 at 29.7-29.9 Mb. The region contains AKR1C genes which function as ketosteroid reductases in steroid hormone biosynthesis, including androgens and estrogens. Mutations in AKR1C genes are associated with human DSDs. Deletion boundaries, sequence properties and gene content were studied by PCR and whole genome sequencing of select deletion homozygotes and control animals. Deletion analysis by PCR in 940 horses, including 622 with DSDs and reproductive problems and 318 phenotypically normal controls, detected 67 deletion homozygotes of which 79% were developmentally or reproductively abnormal. Altogether, 8-9% of all abnormal horses were homozygous for the deletion, with the highest incidence (9.4%) among cryptorchids. The deletion was found in ~4% of our phenotypically normal cohort, ~1% of global warmblood horses and ponies, and ~7% of draught breeds of general horse population as retrieved from published data. Based on the abnormal phenotype of the carriers, the functionally relevant gene content, and the low incidence in general population, we consider the deletion in chromosome 29 as a risk factor for equine DSDs and reproductive disorders.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Hormonas Esteroides Gonadales/biosíntesis , Caballos/genética , Reproducción/genética , Animales , Cruzamiento , Cromosomas/genética , Trastornos del Desarrollo Sexual/patología , Genotipo , Hormonas Esteroides Gonadales/genética , Homocigoto , Polimorfismo de Nucleótido Simple/genética , Reproducción/fisiología , Factores de Riesgo , Eliminación de Secuencia/genética , Desarrollo Sexual/genética
18.
J Anim Breed Genet ; 137(2): 223-233, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31489730

RESUMEN

Equine insect bite hypersensitivity (IBH) is a pruritic skin allergy caused primarily by biting midges, Culicoides spp. IBH susceptibility has polygenic inheritance and occurs at high frequencies in several horse breeds worldwide, causing increased costs and reduced welfare of affected horses. The aim of this study was to identify and validate single nucleotide polymorphisms (SNPs) associated with equine IBH susceptibility. After quality control, 33,523 SNPs were included in a Bayesian genome-wide association study on 177 affected and 178 unaffected Icelandic horses. We report associated regions in E. caballus (ECA) 1, 3, 15 and 18, overlapping with known IBH QTLs in horses, and novel regions containing several genes, together explaining 11.46% of the total genetic variance. For validation, three SNPs on ECA 1 and ECA X (explaining the largest percentage of genetic variance) within 1-mb genomic windows for IBH were genotyped in an independent population of 280 Exmoor ponies. The associated genomic region (152-153 mb) on ECA 1 was confirmed in Exmoor ponies and contains the AQR gene involved in splicing processes and a long non-coding RNA. This study confirms the polygenic nature of IBH susceptibility and suggests a role of transcriptional regulatory mechanisms (e.g., alternative splicing) for IBH predisposition in these horse breeds.


Asunto(s)
Enfermedades de los Caballos/genética , Caballos/genética , Hipersensibilidad/veterinaria , Mordeduras y Picaduras de Insectos/veterinaria , Animales , Cruzamiento , Mapeo Cromosómico/veterinaria , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Hipersensibilidad/genética , Mordeduras y Picaduras de Insectos/inmunología , Masculino , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
BMC Genomics ; 20(1): 759, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640551

RESUMEN

BACKGROUND: Copy Number Variation (CNV) is a common form of genetic variation underlying animal evolution and phenotypic diversity across a wide range of species. In the mammalian genome, high frequency of CNV differentiation between breeds may be candidates for population-specific selection. However, CNV differentiation, selection and its population genetics have been poorly explored in horses. RESULTS: We investigated the patterns, population variation and gene annotation of CNV using the Axiom® Equine Genotyping Array (670,796 SNPs) from a large cohort of individuals (N = 1755) belonging to eight European horse breeds, varying from draught horses to several warmblood populations. After quality control, 152,640 SNP CNVs (individual markers), 18,800 segment CNVs (consecutive SNP CNVs of same gain/loss state or both) and 939 CNV regions (CNVRs; overlapping segment CNVs by at least 1 bp) compared to the average signal of the reference (Belgian draught horse) were identified. Our analyses showed that Equus caballus chromosome 12 (ECA12) was the most enriched in segment CNV gains and losses (~ 3% average proportion of the genome covered), but the highest number of segment CNVs were detected on ECA1 and ECA20 (regardless of size). The Friesian horses showed private SNP CNV gains (> 20% of the samples) on ECA1 and Exmoor ponies displayed private SNP CNV losses on ECA25 (> 20% of the samples). The Warmblood cluster showed private SNP CNV gains located in ECA9 and Draught cluster showed private SNP CNV losses located in ECA7. The length of the CNVRs ranged from 1 kb to 21.3 Mb. A total of 10,612 genes were annotated within the CNVRs. The PANTHER annotation of these genes showed significantly under- and overrepresented gene ontology biological terms related to cellular processes and immunity (Bonferroni P-value < 0.05). We identified 80 CNVRs overlapping with known QTL for fertility, coat colour, conformation and temperament. We also report 67 novel CNVRs. CONCLUSIONS: This work revealed that CNV patterns, in the genome of some European horse breeds, occurred in specific genomic regions. The results provide support to the hypothesis that high frequency private CNVs residing in genes may potentially be responsible for the diverse phenotypes seen between horse breeds.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Variación Genética , Genoma/genética , Caballos/genética , Animales , Cruzamiento , Hibridación Genómica Comparativa , Europa (Continente) , Evolución Molecular , Genética de Población , Genotipo , Fenotipo , Selección Genética
20.
BMC Genomics ; 20(1): 717, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533613

RESUMEN

BACKGROUND: A growing demand for improved physical skills and mental attitude in modern sport horses has led to strong selection for performance in many warmblood studbooks. The aim of this study was to detect genomic regions with low diversity, and therefore potentially under selection, in Swedish Warmblood horses (SWB) by analysing high-density SNP data. To investigate if such signatures could be the result of selection for equestrian sport performance, we compared our SWB SNP data with those from Exmoor ponies, a horse breed not selected for sport performance traits. RESULTS: The genomic scan for homozygous regions identified long runs of homozygosity (ROH) shared by more than 85% of the genotyped SWB individuals. Such ROH were located on ECA4, ECA6, ECA7, ECA10 and ECA17. Long ROH were instead distributed evenly across the genome of Exmoor ponies in 77% of the chromosomes. Two population differentiation tests (FST and XP-EHH) revealed signatures of selection on ECA1, ECA4, and ECA6 in SWB horses. CONCLUSIONS: Genes related to behaviour, physical abilities and fertility, appear to be targets of selection in the SWB breed. This study provides a genome-wide map of selection signatures in SWB horses, and ground for further functional studies to unravel the biological mechanisms behind complex traits in horses.


Asunto(s)
Cruzamiento , Genómica , Caballos/genética , Deportes , Animales , Femenino , Técnicas de Genotipaje , Homocigoto , Caballos/fisiología , Endogamia , Masculino , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...