Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 10, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229173

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratas , Ratones , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Accidente Cerebrovascular/metabolismo , Infarto Cerebral/metabolismo , Inflamación/metabolismo
2.
Front Psychiatry ; 14: 1188697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37555005

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by gradual loss of midbrain dopamine neurons, leading to impaired motor function. Preclinical studies have indicated cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) to be potential therapeutic molecules for the treatment of PD. CDNF was proven to be safe and well tolerated when tested in Phase I-II clinical trials in PD patients. Neuroprotective and neurorestorative effects of CDNF and MANF were demonstrated in animal models of PD, where they promoted the survival of dopamine neurons and improved motor function. However, biological roles of endogenous CDNF and MANF proteins in the midbrain dopamine system have been less clear. In addition to extracellular trophic activities, CDNF/MANF proteins function intracellularly in the endoplasmic reticulum (ER), where they modulate protein homeostasis and protect cells against ER stress by regulating the unfolded protein response (UPR). Here, our aim is to give an overview of the biology of endogenous CDNF and MANF in the brain dopamine system. We will discuss recent studies on CDNF and MANF knockout animal models, and effects of CDNF and MANF in preclinical models of PD. To elucidate possible roles of CDNF and MANF in human biology, we will review CDNF and MANF tissue expression patterns and regulation of CDNF/MANF levels in human diseases. Finally, we will discuss novel findings related to the molecular mechanism of CDNF and MANF action in ER stress, UPR, and inflammation, all of which are mechanisms potentially involved in the pathophysiology of PD.

3.
Nat Aging ; 3(5): 585-599, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37118549

RESUMEN

Age-related decline in skeletal muscle regenerative capacity is multifactorial, yet the contribution of immune dysfunction to regenerative failure is unknown. Macrophages are essential for effective debris clearance and muscle stem cell activity during muscle regeneration, but the regulatory mechanisms governing macrophage function during muscle repair are largely unexplored. Here, we uncover a new mechanism of immune modulation operating during skeletal muscle regeneration that is disrupted in aged animals and relies on the regulation of macrophage function. The immune modulator mesencephalic astrocyte-derived neurotrophic factor (MANF) is induced following muscle injury in young mice but not in aged animals, and its expression is essential for regenerative success. Regenerative impairments in aged muscle are associated with defects in the repair-associated myeloid response similar to those found in MANF-deficient models and could be improved through MANF delivery. We propose that restoring MANF levels is a viable strategy to improve myeloid response and regenerative capacity in aged muscle.


Asunto(s)
Factores de Crecimiento Nervioso , Cicatrización de Heridas , Ratones , Animales , Factores de Crecimiento Nervioso/genética , Músculo Esquelético/metabolismo , Envejecimiento
4.
Brain ; 146(9): 3783-3799, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928391

RESUMEN

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Ratas , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Endorribonucleasas/uso terapéutico , Superóxido Dismutasa-1/genética , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/farmacología , Colina O-Acetiltransferasa/uso terapéutico , Dopamina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neuronas Motoras/metabolismo , Estrés del Retículo Endoplásmico , Factores de Crecimiento Nervioso/metabolismo
5.
Cell Rep ; 42(2): 112066, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36739529

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic ß cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α. The expression of wild-type MANF, but not its IRE1α binding-deficient mutant, attenuates UPR signaling by decreasing IRE1α oligomerization; phosphorylation; splicing of Xbp1, Atf6, and Txnip levels; and protecting neurons from ER stress-induced death. MANF-IRE1α interaction and not MANF-BiP interaction is crucial for MANF pro-survival activity in neurons in vitro and is required to protect dopamine neurons in an animal model of Parkinson's disease. Our data show IRE1α as an intracellular receptor for MANF and regulator of neuronal survival.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Animales , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Neuronas Dopaminérgicas/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012764

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is a neurotrophic factor that has beneficial effects on dopamine neurons in both in vitro and in vivo models of Parkinson's disease (PD). CDNF was recently tested in phase I-II clinical trials for the treatment of PD, but the mechanisms underlying its neuroprotective properties are still poorly understood, although studies have suggested its role in the regulation of endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR). The aim of this study was to investigate the mechanism of action of CDNF through analyzing the involvement of UPR signaling in its anti-apoptotic function. We used tunicamycin to induce ER stress in mice in vivo and used cultured primary neurons and found that CDNF expression is regulated by ER stress in vivo and that the involvement of UPR pathways is important for the neuroprotective function of CDNF. Moreover, we used AP-MS and BiFC to perform the first interactome screening for CDNF and report novel binding partners of CDNF. These findings allowed us to hypothesize that CDNF protects neurons from ER-stress-inducing agents by modulating UPR signaling towards cell survival outcomes.


Asunto(s)
Chaperonas Moleculares , Factores de Crecimiento Nervioso , Enfermedad de Parkinson , Animales , Supervivencia Celular , Neuronas Dopaminérgicas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Ratones , Chaperonas Moleculares/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Enfermedad de Parkinson/metabolismo , Respuesta de Proteína Desplegada
7.
Cell Mol Life Sci ; 79(2): 124, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35129674

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) display cytoprotective effects in animal models of neurodegenerative diseases. These endoplasmic reticulum (ER)-resident proteins belong to the same protein family and function as ER stress regulators. The relationship between CDNF and MANF function, as well as their capability for functional compensation, is unknown. We aimed to investigate these questions by generating mice lacking both CDNF and MANF. Results showed that CDNF-deficient Manf-/- mice presented the same phenotypes of growth defect and diabetes as Manf-/- mice. In the muscle, CDNF deficiency resulted in increased activation of unfolded protein response (UPR), which was aggravated when MANF was ablated. In the brain, the combined loss of CDNF and MANF did not exacerbate UPR activation caused by the loss of MANF alone. Consequently, CDNF and MANF deficiency in the brain did not cause degeneration of dopamine neurons. In conclusion, CDNF and MANF present functional redundancy in the muscle, but not in the other tissues examined here. Thus, they regulate the UPR in a tissue-specific manner.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Estrés del Retículo Endoplásmico , Factores de Crecimiento Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Neuronas Dopaminérgicas/patología , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Respuesta de Proteína Desplegada
8.
Mol Psychiatry ; 27(3): 1310-1321, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907395

RESUMEN

Midbrain dopamine neurons deteriorate in Parkinson's disease (PD) that is a progressive neurodegenerative movement disorder. No cure is available that would stop the dopaminergic decline or restore function of injured neurons in PD. Neurotrophic factors (NTFs), e.g., glial cell line-derived neurotrophic factor (GDNF) are small, secreted proteins that promote neuron survival during mammalian development and regulate adult neuronal plasticity, and they are studied as potential therapeutic agents for the treatment of neurodegenerative diseases. However, results from clinical trials of GDNF and related NTF neurturin (NRTN) in PD have been modest so far. In this review, we focus on cerebral dopamine neurotrophic factor (CDNF), an unconventional neurotrophic protein. CDNF delivered to the brain parenchyma protects and restores dopamine neurons in animal models of PD. In a recent Phase I-II clinical trial CDNF was found safe and well tolerated. CDNF deletion in mice led to age-dependent functional changes in the brain dopaminergic system and loss of enteric neurons resulting in slower gastrointestinal motility. These defects in Cdnf-/- mice intriguingly resemble deficiencies observed in early stage PD. Different from classical NTFs, CDNF can function both as an extracellular trophic factor and as an intracellular, endoplasmic reticulum (ER) luminal protein that protects neurons and other cell types against ER stress. Similarly to the homologous mesencephalic astrocyte-derived neurotrophic factor (MANF), CDNF is able to regulate ER stress-induced unfolded protein response (UPR) signaling and promote protein homeostasis in the ER. Since ER stress is thought to be one of the pathophysiological mechanisms contributing to the dopaminergic degeneration in PD, CDNF, and its small-molecule derivatives that are under development may provide useful tools for experimental medicine and future therapies for the treatment of PD and other neurodegenerative protein-misfolding diseases.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Mamíferos/metabolismo , Ratones , Factores de Crecimiento Nervioso/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Respuesta de Proteína Desplegada
9.
J Biol Chem ; 296: 100295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460650

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of ER-stressed neurons in vitro as a general unfolded protein response (UPR) regulator, affecting several UPR pathways simultaneously. Interestingly, MANF does not affect naïve neurons. We hypothesize that MANF regulates UPR signaling toward a mode more compatible with neuronal survival. Screening of MANF interacting proteins from two mammalian cell lines revealed a conserved interactome of 15 proteins including several ER chaperones such as GRP78, GRP170, protein disulfide isomerase family A member 1, and protein disulfide isomerase family A member 6. Further characterization confirmed previously published finding that MANF is a cofactor of GRP78 interacting with its nucleotide binding domain. Using microscale thermophoresis and nuclear magnetic resonance spectroscopy, we discovered that MANF is an ATP binding protein and that ATP blocks the MANF-GRP78 interaction. Interestingly, functional analysis of the antiapoptotic properties of MANF mutants in cultured neurons revealed divergent roles of MANF as a GRP78 cofactor and as an antiapoptotic regulator of UPR. We conclude that the co-factor type interaction with GRP78 is dispensable for the survival-promoting activity of MANF in neurons.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Retículo Endoplásmico/genética , Proteínas de Choque Térmico/genética , Factores de Crecimiento Nervioso/genética , Respuesta de Proteína Desplegada , Animales , Apoptosis/genética , Supervivencia Celular , Neuronas Dopaminérgicas/citología , Embrión de Mamíferos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Factores de Crecimiento Nervioso/metabolismo , Cultivo Primario de Células , Unión Proteica , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Mapeo de Interacción de Proteínas , Transducción de Señal
10.
J Comp Neurol ; 528(14): 2420-2444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32154930

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is expressed in the brain and is neuroprotective. We have previously shown that CDNF is also expressed in the bowel and that its absence leads to degeneration and autophagy in the enteric nervous system (ENS), particularly in the submucosal plexus. We now demonstrate that enteric CDNF immunoreactivity is restricted to neurons (submucosal > myenteric) and is not seen in glia, interstitial cells of Cajal, or smooth muscle. Expression of CDNF, moreover, is essential for the normal development and survival of enteric dopaminergic neurons; thus, expression of the dopaminergic neuronal markers, dopamine, tyrosine hydroxylase, and dopamine transporter are deficient in the ileum of Cdnf -/- mice. The normal age-related decline in proportions of submucosal dopaminergic neurons is exacerbated in Cdnf -/- animals. The defect in Cdnf -/- animals is not dopamine-restricted; proportions of other submucosal neurons (NOS-, GABA-, and CGRP-expressing), are also deficient. The deficits in submucosal neurons are reflected functionally in delayed gastric emptying, slowed colonic motility, and prolonged total gastrointestinal transit. CDNF is expressed selectively in isolated enteric neural crest-derived cells (ENCDC), which also express the dopamine-related transcription factor Foxa2. Addition of CDNF to ENCDC promotes development of dopaminergic neurons; moreover, survival of these neurons becomes CDNF-dependent after exposure to bone morphogenetic protein 4. The effects of neither glial cell-derived neurotrophic factor (GDNF) nor serotonin are additive with CDNF. We suggest that CDNF plays a critical role in development and long-term maintenance of dopaminergic and other sets of submucosal neurons.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Tránsito Gastrointestinal/fisiología , Factores de Crecimiento Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Sistema Nervioso Entérico/crecimiento & desarrollo , Ratones , Ratones Noqueados , Neuronas/citología
11.
Artículo en Inglés | MEDLINE | ID: mdl-31781038

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) form a family of atypical growth factors discovered for their neuroprotective properties in the central nervous system (CNS) in animal models of neurodegenerative diseases. Although their mechanism of protective action still remains unclear, it has been suggested that both MANF and CDNF promote cell survival through regulating the unfolded protein response (UPR), thereby relieving endoplasmic reticulum (ER) stress. Recent studies identified MANF for its emerging roles in metabolic function, inflammation and pancreatic ß-cells. We have found that MANF deletion from the pancreas and ß-cells leads to postnatal depletion of ß-cells and diabetes. Moreover, global MANF-deficiency in mice results in severe diabetes-independent growth retardation. As the expression pattern of MANF in mouse tissues has not been extensively studied, we set out to thoroughly investigate MANF expression in embryonic and adult mice using immunohistochemistry, histochemical X-gal staining, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription PCR (RT-qPCR). We found that MANF is highly expressed in brain neurons regulating energy homeostasis and appetite, as well as in hypothalamic nuclei producing hormones and neuropeptides important for different body functions. Strong expression of MANF was also observed in peripheral mouse tissues and cells with high secretory and metabolic function. These include pituitary gland and interestingly we found that the anterior pituitary gland is smaller in MANF-deficient mice compared to wild-type mice. Consequently, we found reduction in the number of growth hormone- and prolactin-producing cells. This combined with increased expression of UPR genes, reduced number of proliferating cells in the anterior pituitary and dysregulated expression of pituitary hormones might contribute to the severe growth defect seen in the MANF knockout mice. Moreover, in this study we compared MANF and CDNF levels in mouse tissues. Unlike MANF, CDNF protein levels are generally lower in mouse tissues, and the highest levels of CDNF was observed in the tissues with high-energy demands and oxidative roles, including heart, muscle, testis, and brown adipose tissue.

12.
Sci Rep ; 9(1): 14318, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586115

RESUMEN

Dietary restriction induces beneficial metabolic changes and prevents age-related deterioration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) shows protective effects on cells in various models of degenerative diseases. Here we studied whether circulating concentrations of MANF are associated with fasting-induced positive effects. We quantified the levels of circulating MANF from 40 human subjects before and after therapeutic fasting. As measured by an enzyme-linked immunosorbent assay (ELISA), the mean concentration of plasma MANF increased after an average fasting of 15 days. Plasma MANF levels correlated inversely with adiponectin, a hormone that regulates metabolism, thus suggesting that MANF levels are related to metabolic homeostasis. To study the effects of dietary intervention on MANF concentrations in mice, we developed an ELISA for mouse MANF and verified its specificity using MANF knock-out (KO) tissue. A switch from high-fat to normal diet increased MANF levels and downregulated the expression of unfolded protein response (UPR) genes in the liver, indicating decreased endoplasmic reticulum (ER) stress. Liver MANF and serum adiponectin concentrations correlated inversely in mice. Our findings demonstrate that MANF expression and secretion increases with dietary intervention. The MANF correlation to adiponectin and its possible involvement in metabolic regulation and overall health warrants further studies.


Asunto(s)
Ayuno/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Adiponectina/sangre , Adulto , Anciano , Animales , Dieta Alta en Grasa/efectos adversos , Ayuno/sangre , Homeostasis , Humanos , Hígado/química , Hígado/metabolismo , Mesencéfalo/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Persona de Mediana Edad , Factores de Crecimiento Nervioso/sangre , Factores de Crecimiento Nervioso/genética , Regulación hacia Arriba , Adulto Joven
13.
Psychiatry Res Neuroimaging ; 292: 54-61, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31536947

RESUMEN

The symptoms of ADHD tend to have continuity to adulthood even though the diagnostic criteria were no longer fulfilled. The aim of our study was to find out possible differences in BOLD signal in the face-processing network between adults with previous ADHD (pADHD, n = 23) and controls (n = 29) from the same birth cohort when viewing dynamic facial expressions. The brain imaging was performed using a General Electric Signa 1.5 Tesla HDX. Dynamic facial expression stimuli included happy and fearful expressions. The pADHD group demonstrated elevated activity in the left parietal area during fearful facial expression. The Network Based Statistics including multiple areas demonstrated higher functional connectivity in attention related network during visual exposure to happy faces in the pADHD group. Conclusions: We found differences in brain responses to facial emotional expressions in individuals with previous ADHD compared to control group in a number of brain regions including areas linked to processing of facial emotional expressions and attention. This might indicate that although these individuals no longer fulfill the ADHD diagnosis, they exhibit overactive network properties affecting facial processing.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/psicología , Encéfalo/diagnóstico por imagen , Expresión Facial , Estimulación Luminosa/métodos , Reconocimiento en Psicología/fisiología , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Encéfalo/fisiopatología , Estudios Transversales , Emociones/fisiología , Miedo/fisiología , Miedo/psicología , Femenino , Humanos , Masculino , Adulto Joven
14.
Front Neurosci ; 13: 929, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555085

RESUMEN

BACKGROUND: Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) promote the survival of midbrain dopamine neurons in animal models of Parkinson's disease (PD). However, little is known about endogenous concentrations of MANF and CDNF in human PD patients, and their relation to PD pathogenesis. Our main objective was to study whether circulating concentrations of MANF and CDNF differ between PD patients and controls, and if they correlate with clinical parameters. Levels of circulating CDNF were studied for the first time. METHODS: MANF and CDNF levels were measured from serum samples of 34 PD patients and 35 controls using validated in-lab-designed enzyme-linked immunosorbent assay (ELISAs). MANF and CDNF mRNA levels in whole blood samples of 60 PD patients and 30 controls were measured by quantitative real time polymerase chain reaction (qRT-PCR). MANF concentrations in different blood cell types were measured by ELISA. RESULTS: Circulating MANF concentrations were significantly higher in PD patients compared to controls (P < 0.001) and were positively correlated with Beck Depression Inventory (BDI) depression rating. MANF protein was present in blood cells, however, MANF mRNA levels in the blood did not differ between PD patients and controls (P = 0.44). The mean concentration of serum CDNF was 33 pg/ml in the controls. CDNF levels were not altered in PD patients (P = 0.25). CONCLUSION: MANF but not CDNF level was increased in the blood of PD patients. It would be interesting to examine the blood level of MANF from early stage PD patients in future studies to test whether MANF can be used as a clinical marker of PD.

15.
Cell Transplant ; 28(4): 413-424, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30841717

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) shows beneficial effects in rodent models of Parkinson's and Alzheimer's disease. The brain is a challenging target for protein therapy due to its exclusive blood-brain barrier. Hence, the therapeutic protein should be delivered directly to the brain parenchyma. Implantation of encapsulated mammalian cells that constantly secrete CDNF is a potential approach for targeted and long-term protein delivery to the brain. In this study, we generated several CDNF-secreting cell clones derived from human retinal pigment epithelial cell line ARPE-19, and studied CDNF secretion from the clones maintained as monolayers and in polymeric microcapsules. The secretion of wild type (wt) CDNF transgene was low and the majority of the produced protein remained intracellular, locating mainly to the endoplasmic reticulum (ER). The secretion of wtCDNF decreased to even lower levels when the clones were in a non-dividing state, as in the microcapsules. Both codon optimization and deletion of the putative ER-retrieval signal (four last amino acids: KTEL) improved CDNF secretion. More importantly, the secretion of KTEL-deleted CDNF remained constant in the non-dividing clones. Thus, cells expressing KTEL-deleted CDNF, in contrast to wtCDNF, can be considered for cell encapsulation applications if the KTEL-deleted CDNF is proven to be biologically active in vivo.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Animales , Línea Celular , Células Cultivadas , Humanos , Ratones , Ratas
16.
Elife ; 72018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30412052

RESUMEN

Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development.


Asunto(s)
Diabetes Mellitus/genética , Estrés del Retículo Endoplásmico/genética , Células Madre Pluripotentes Inducidas/química , Proinsulina/genética , Animales , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Diabetes Mellitus/patología , Retículo Endoplásmico/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Recién Nacido , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Mutación , Proinsulina/química , Pliegue de Proteína , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual
17.
Diabetologia ; 61(10): 2202-2214, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30032427

RESUMEN

AIMS/HYPOTHESIS: There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress. Given this novel association between MANF and beta cell death, we studied the potential of MANF to protect human beta cells against experimentally induced ER stress. METHODS: Primary human islets were challenged with proinflammatory cytokines, with or without MANF. Cell viability was analysed and global transcriptomic analysis performed. Results were further validated using the human beta cell line EndoC-ßH1. RESULTS: There was increased expression and secretion of MANF in human beta cells in response to cytokines. Addition of recombinant human MANF reduced cytokine-induced cell death by 38% in human islets (p < 0.05). MANF knockdown in EndoC-ßH1 cells led to increased ER stress after cytokine challenge. Mechanistic studies showed that the protective effect of MANF was associated with repression of the NF-κB signalling pathway and amelioration of ER stress. MANF also increased the proliferation of primary human beta cells twofold when TGF-ß signalling was inhibited (p < 0.01). CONCLUSIONS/INTERPRETATION: Our studies show that exogenous MANF protein can provide protection to human beta cells against death induced by inflammatory stress. The antiapoptotic and mitogenic properties of MANF make it a potential therapeutic agent for beta cell protection.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/citología , Factores de Crecimiento Nervioso/metabolismo , Astrocitos/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamación , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , FN-kappa B/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transcriptoma
18.
Sci Adv ; 4(5): eaap8957, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806020

RESUMEN

Stroke is the most common cause of adult disability in developed countries, largely because spontaneous recovery is often incomplete, and no pharmacological means to hasten the recovery exist. It was recently shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) induces alternative or M2 activation of immune cells after retinal damage in both fruit fly and mouse and mediates retinal repair. Therefore, we set out to study whether poststroke MANF administration would enhance brain tissue repair and affect behavioral recovery of rats after cerebral ischemic injury. We used the distal middle cerebral artery occlusion (dMCAo) model of ischemia-reperfusion injury and administered MANF either as a recombinant protein or via adeno-associated viral (AAV) vector. We discovered that, when MANF was administered to the peri-infarct region 2 or 3 days after stroke, it promoted functional recovery of the animals without affecting the lesion volume. Further, AAV7-MANF treatment transiently increased the number of phagocytic macrophages in the subcortical peri-infarct regions. In addition, the analysis of knockout mice revealed the neuroprotective effects of endogenous MANF against ischemic injury, although endogenous MANF had no effect on immune cell-related gene expression. The beneficial effect of MANF treatment on the reversal of stroke-induced behavioral deficits implies that MANF-based therapies could be used for the repair of brain tissue after stroke.


Asunto(s)
Astrocitos/metabolismo , Factores de Crecimiento Nervioso/genética , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/metabolismo , Animales , Conducta Animal , Isquemia Encefálica/complicaciones , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Crecimiento Nervioso/metabolismo , Ratas , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología , Transducción Genética , Transgenes
19.
BMC Genet ; 18(1): 52, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28578657

RESUMEN

BACKGROUND: Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) and Cerebral Dopamine Neurotrophic Factor (CDNF) form an evolutionarily conserved family of neurotrophic factors. Orthologues for MANF/CDNF are the only neurotrophic factors as yet identified in invertebrates with conserved amino acid sequence. Previous studies indicate that mammalian MANF and CDNF support and protect brain dopaminergic system in non-cell-autonomous manner. However, MANF has also been shown to function intracellularly in the endoplasmic reticulum. To date, the knowledge on the interacting partners of MANF/CDNF and signaling pathways they activate is rudimentary. Here, we have employed the Drosophila genetics to screen for potential interaction partners of Drosophila Manf (DmManf) in vivo. RESULTS: We first show that DmManf plays a role in the development of Drosophila wing. We exploited this function by using Drosophila UAS-RNAi lines and discovered novel genetic interactions of DmManf with genes known to function in the mitochondria. We also found evidence of an interaction between DmManf and the Drosophila homologue encoding Ku70, the closest structural homologue of SAP domain of mammalian MANF. CONCLUSIONS: In addition to the previously known functions of MANF/CDNF protein family, DmManf also interacts with mitochondria-related genes. Our data supports the functional importance of these evolutionarily significant proteins and provides new insights for the future studies.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes Mitocondriales , Factores de Crecimiento Nervioso/metabolismo , Ubiquinona/biosíntesis , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Masculino , Factores de Crecimiento Nervioso/genética , ARN Interferente Pequeño , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
20.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28303260

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing α-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 µg). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5µg) and GDNF (1µg) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2α subunit (eIF2α).


Asunto(s)
Antiparkinsonianos/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Factores de Crecimiento Nervioso/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Anfetamina/farmacología , Animales , Células Cultivadas , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Sinergismo Farmacológico , Quimioterapia Combinada , Chaperón BiP del Retículo Endoplásmico , Lateralidad Funcional , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Oxidopamina , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA