Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
3.
Neurocrit Care ; 36(1): 171-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34374002

RESUMEN

BACKGROUND: The amount of intracranial blood is a strong predictor of poor outcome after subarachnoid hemorrhage (SAH). Here, we aimed to measure iron concentrations in the cerebral white matter, using the cerebral microdialysis (CMD) technique, and to associate iron levels with the local metabolic profile, complications, and functional outcome. METHODS: For the observational cohort study, 36 patients with consecutive poor grade SAH (Hunt & Hess grade of 4 or 5, Glasgow Coma Scale Score ≤ 8) undergoing multimodal neuromonitoring were analyzed for brain metabolic changes, including CMD iron levels quantified by graphite furnace atomic absorption spectrometry. The study time encompassed 14 days after admission. Statistical analysis was performed using generalized estimating equations. RESULTS: Patients were admitted in a poor clinical grade (n = 26, 72%) or deteriorated within 24 h (n = 10, 28%). The median blood volume in the subarachnoid space was high (SAH sum score = 26, interquartile range 20-28). Initial CMD iron was 44 µg/L (25-65 µg/L), which significantly decreased to a level of 25 µg/L (14-30 µg/L) at day 4 and then constantly increased over the remaining neuromonitoring days (p < 0.01). A higher intraventricular hemorrhage sum score (≥ 5) was associated with higher CMD iron levels (Wald-statistic = 4.1, df = 1, p = 0.04) but not with the hemorrhage load in the subarachnoid space (p = 0.8). In patients developing vasospasm, the CMD iron load was higher, compared with patients without vasospasm (Wald-statistic = 4.1, degree of freedom = 1, p = 0.04), which was not true for delayed cerebral infarction (p = 0.4). Higher iron concentrations in the brain extracellular fluid (34 µg/L, 36-56 µg/L vs. 23 µg/L, 15-37 µg/L) were associated with mitochondrial dysfunction (CMD lactate to pyruvate ratio > 30 and CMD-pyruvate > 70 µM/L, p < 0.001). Brain extracellular iron load was not associated with functional outcome after 3 months (p > 0.5). CONCLUSIONS: This study suggests that iron accumulates in the cerebral white matter in patients with poor grade SAH. These findings may support trials aiming to scavenger brain extracellular iron based on the hypothesis that iron-mediated neurotoxicity may contribute to acute and secondary brain injury following SAH.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Encéfalo/metabolismo , Lesiones Encefálicas/complicaciones , Humanos , Hierro/metabolismo , Microdiálisis/métodos
4.
J Lipid Res ; 62: 100111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34450173

RESUMEN

The molecular assembly of cells depends not only on the balance between anabolism and catabolism but to a large degree on the building blocks available in the environment. For cultured mammalian cells, this is largely determined by the composition of the applied growth medium. Here, we study the impact of lipids in the medium on mitochondrial membrane architecture and function by combining LC-MS/MS lipidomics and functional tests with lipid supplementation experiments in an otherwise serum-free and lipid-free cell culture model. We demonstrate that the composition of mitochondrial cardiolipins strongly depends on the lipid environment in cultured cells and favors the incorporation of essential linoleic acid over other fatty acids. Simultaneously, the mitochondrial respiratory complex I activity was altered, whereas the matrix-localized enzyme citrate synthase was unaffected. This raises the question on a link between membrane composition and respiratory control. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium. This underlines the importance of considering these factors when using and establishing cell culture models in biomedical research. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium.


Asunto(s)
Cardiolipinas/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Células HeLa , Humanos , Porcinos , Espectrometría de Masas en Tándem , Células Tumorales Cultivadas
5.
J Vis Exp ; (164)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33191929

RESUMEN

The adsorption of biomolecules from surrounding biological matrices to the surface of nanomaterials (NMs) to form the corona has been of interest for the past decade. Interest in the bio-nano interface arises from the fact that the biomolecular corona confers a biological identity to NMs and thus causes the body to identify them as "self". For example, previous studies have demonstrated that the proteins in the corona are capable of interacting with membrane receptors to influence cellular uptake and established that the corona is responsible for cellular trafficking of NMs and their eventual toxicity. To date, most research has focused upon the protein corona and overlooked the possible impacts of the metabolites included in the corona or synergistic effects between components in the complete biomolecular corona. As such, this work demonstrates methodologies to characterize both the protein and metabolite components of the biomolecular corona using bottom-up proteomics and metabolomics approaches in parallel. This includes an on-particle digest of the protein corona with a surfactant used to increase protein recovery, and a passive characterization of the metabolite corona by analyzing metabolite matrices before and after NM exposures. This work introduces capillary electrophoresis - mass spectrometry (CESI-MS) as a new technique for NM corona characterization. The protocols outlined here demonstrate how CESI-MS can be used for the reliable characterization of both the protein and metabolite corona acquired by NMs. The move to CESI-MS greatly decreases the volume of sample required (compared to traditional liquid chromatography - mass spectrometry (LC-MS) approaches) with multiple injections possible from as little as 5 µL of sample, making it ideal for volume limited samples. Furthermore, the environmental consequences of analysis are reduced with respect to LC-MS due to the low flow rates (<20 nL/min) in CESI-MS, and the use of aqueous electrolytes which eliminates the need for organic solvents.


Asunto(s)
Electroforesis Capilar/métodos , Metaboloma , Nanoestructuras/química , Corona de Proteínas/química , Espectrometría de Masas en Tándem/métodos , Adsorción , Cromatografía Liquida , Electrólitos/química , Humanos , Isomerismo , Péptidos/química , Reproducibilidad de los Resultados
6.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32961048

RESUMEN

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Asunto(s)
Electroforesis Capilar/métodos , Compuestos Orgánicos/sangre , Compuestos Orgánicos/orina , Espectrometría de Masas en Tándem/métodos , Cationes/química , Bases de Datos de Compuestos Químicos , Electrólitos/química , Humanos , Metaboloma , Metabolómica , Reproducibilidad de los Resultados
7.
Clin Chem ; 66(9): 1200-1209, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32797158

RESUMEN

BACKGROUND: The high molecular complexity of variably O-glycosylated and degraded pro B-type natriuretic peptide (proBNP) derived molecular forms challenges current immunoassays. Antibodies used show pronounced differences in cross-reactivities with these circulating fragments, which still need to be better characterized on a molecular level. To pave the way for advanced quantitative assays in the future, it is critical to fully understand these circulating forms. METHODS: Plasma samples were collected from 8 heart failure (HF) patients and 2 healthy controls. NT-proBNP and proBNP were purified by immunoprecipitation and analyzed by nano-flow liquid chromatography coupled to high-resolution mass spectrometry. Fragments formed during proteolysis in solution digestion were distinguished from naturally occurring peptides by using an 18O stable isotope labeling strategy. RESULTS: We detected 16 previously unknown circulating fragments of proBNP peptides (9 of which are located in the N-terminal and 7 in the C-terminal region), revealing a more advanced state of degradation than previously known. Two of these fragments are indicative of either unidentified processing modes or a far-reaching C-terminal degradation (or a combination thereof) of the precursor proBNP. CONCLUSIONS: Our results further restrict ideal target epitopes for immunoassay antibodies and expand the current thinking of diversity, degradation, and processing of proBNP, as well as the distribution of circulating forms.


Asunto(s)
Insuficiencia Cardíaca/sangre , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Femenino , Glicosilación , Humanos , Marcaje Isotópico , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/química , Isótopos de Oxígeno/química , Fragmentos de Péptidos/química
8.
Biol Chem ; 401(9): 1081-1092, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32229688

RESUMEN

Lipocalins, small extracellular hydrophobic molecule carriers, can be internalized by a variety of different cells. However, to date receptors have only been identified for human lipocalins. Here, we specifically investigated uptake mechanisms for lipocalins ß-lactoglobulin and Fel d 4 in HeLa and Chinese hamster ovary (CHO) cells. We provide evidence that cell surface heparan sulphate proteoglycan is essential for internalization of these lipocalins. In HeLa cells, lipocalin uptake was inhibited by competition with soluble heparin, enzymatic digestion of cellular heparan sulphate by heparinase and inhibition of its biosynthesis by sodium chlorate. Biochemical studies by heparin affinity chromatography and colocalization studies further supported a role of heparan sulphate proteoglycan in lipocalin uptake. Finally, lipocalin uptake was blocked in CHO mutant cells defective in glycosaminoglycan biosynthesis whereas in wild-type cells it was clearly detectable. Thus, cell surface heparan sulphate proteoglycan represents a novel component absolutely participating in the cellular uptake of some lipocalins.


Asunto(s)
Alérgenos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Lactoglobulinas/farmacocinética , Lipocalinas/farmacocinética , Animales , Células CHO , Cricetulus , Células HeLa , Humanos , Lactoglobulinas/metabolismo , Lipocalinas/metabolismo
9.
Cell Rep ; 30(12): 4281-4291.e4, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209484

RESUMEN

Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.


Asunto(s)
Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Especificidad de Órganos , Fosfolípidos/metabolismo , Animales , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Redes Neurales de la Computación , Transcripción Genética
10.
Methods ; 184: 125-134, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32014606

RESUMEN

The analysis, identification and quantification of histones and their post-translational modifications plays a central role in chromatin research and in studying epigenetic regulations during physiological processes. In the last decade analytical strategies based on mass spectrometry have been greatly improved for providing a global view of single modification abundances or to determine combinatorial patterns of modifications. Presented here is a newly developed strategy for histone protein analysis and a number of applications are illustrated with an emphasis on PTM characterization. Capillary electrophoresis is coupled to mass spectrometry (CE-MS) and has proven to be a very promising concept as it enables to study intact histones (top-down proteomics) as well as the analysis of enzymatically digested proteins (bottom-up proteomics). This technology combines highly efficient low-flow CE separations with ionization in a single device and offers an orthogonal separation principle to conventional LC-MS analysis, thus expanding the existing analytical repertoire in a perfect manner.


Asunto(s)
Electroforesis Capilar/métodos , Histonas/análisis , Espectrometría de Masas/métodos , Proteómica/métodos , Animales , Código de Histonas , Histonas/metabolismo , Humanos , Ratones , Procesamiento Proteico-Postraduccional , Ratas
11.
FEBS Lett ; 594(1): 31-42, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31423582

RESUMEN

Late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) is a scaffold protein complex that anchors and regulates multiprotein signaling units on late endosomes/lysosomes. To identify LAMTOR-modulated endolysosomal proteins, primary macrophages were derived from bone marrow of conditional knockout mice carrying a specific deletion of LAMTOR2 in the monocyte/macrophage cell lineage. Affymetrix-based transcriptomic analysis and quantitative iTRAQ-based organelle proteomic analysis of endosomes derived from macrophages were performed. Further analyses showed that LAMTOR could be a novel regulator of foam cell differentiation. The lipid droplet formation phenotype observed in macrophages was additionally confirmed in MEFs, where lipidomic analysis identified cholesterol esters as specifically downregulated in LAMTOR2 knockout cells. The data obtained indicate a function of LAMTOR2 in lipid metabolism.


Asunto(s)
Diferenciación Celular , Células Espumosas/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Proteínas/metabolismo , Animales , Células Cultivadas , Ésteres del Colesterol/metabolismo , Células Espumosas/citología , Gotas Lipídicas/metabolismo , Macrófagos/citología , Ratones , Proteínas/genética , Transcriptoma
12.
Nanomaterials (Basel) ; 9(6)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226785

RESUMEN

Increased understanding of the role of the nanomaterial protein corona in driving nanomaterial uptake into, and impacts on, cells and organisms, and the consequent need for characterization of the corona, has led to a flourishing of methods for isolation and analysis of the constituent proteins over the past decade. However, despite over 700 corona studies to date, very little is understood in terms of which methods provide the most precise and comprehensive characterization of the corona. With the increasing importance of the modeling of corona formation and its correlation with biological impacts, it is timely to properly characterize and validate the isolation approaches used to determine the protein corona. The current work introduces Capillary Electrophoresis with Electro Spray Ionization Mass Spectrometry (CESI-MS) as a novel method for protein corona characterizations and develops an on-particle tryptic digestion method, comparing peptide solubilization solutions and characterizing the recovery of proteins from the nanomaterial surface. The CESI-MS was compared to the gold standard nano-LC-MS for corona analysis and maintained a high degree of reproducibility, while increasing throughput by >3-fold. The on-particle digestion is compared to an in-solution digestion and an in-gel digestion of the protein corona. Interestingly, a range of different protein classes were found to be recovered to greater or lesser extents among the different methods. Apolipoproteins were detected at lower concentrations when a surfactant was used to solubilize peptides, whereas immunoglobulins in general have a high affinity for nanomaterials, and thus show lower recovery using on-particle digestion. The optimized on-particle digestion was validated using 6 nanomaterials and proved capable of recovering in excess of 97% of the protein corona. These are important factors to consider when designing corona studies and modeling corona formation and impacts, highlighting the significance of a comprehensive validation of nanomaterial corona analysis methods.

13.
Nat Commun ; 10(1): 2572, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189917

RESUMEN

Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone-bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Retroalimentación Fisiológica/fisiología , Chaperonas Moleculares/metabolismo , Ataxias Espinocerebelosas/patología , Animales , Retroalimentación Fisiológica/efectos de los fármacos , Fibroblastos , Células HEK293 , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Hipocampo/patología , Holoenzimas/metabolismo , Humanos , Leupeptinas/farmacología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Cultivo Primario de Células , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Nucleósidos de Purina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
14.
Cell Microbiol ; 21(5): e13000, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30578712

RESUMEN

Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)-producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A-subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re-evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS-pathogenesis and to develop therapeutic approaches.


Asunto(s)
Escherichia coli/química , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Chlorocebus aethiops , Dicroismo Circular , Factor H de Complemento/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescencia , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Unión Proteica , Conformación Proteica , Toxina Shiga II/genética , Trihexosilceramidas/metabolismo , Tripsina , Células Vero
15.
PLoS One ; 13(7): e0201224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30059514

RESUMEN

Positron emission tomography (PET) with radiolabelled peptide-based tracers has attracted great interest in oncology over the past decades. The success of imaging is closely related to sufficient uptake of the radiotracer in malignant tissue and for this sufficient biological half-life, particularly in the bloodstream, is mandatory. Fast enzymatic degradation during circulation leading to insufficient imaging abilities of peptide-based radioligands remains a major issue. The design of multimeric constructs, bearing multiple targeting moieties, has been widely applied to improve target interaction. This concept may also be applied to prolong the biological half-life of peptide-based radiopharmaceuticals as enzymatic degradation can result in formation of metabolites still capable to interact with the target binding site. In this study we aimed to identify such metabolites and therefore we utilized the siderophore-based bifunctional chelator fusarinine C (FSC) for the design of novel mono- and multimeric constructs, bearing minigastrin (MG) analogues as targeting moieties to address cholecystokinin-2 receptors (CCK2R) which are overexpressed in a variety of cancerous diseases and are well known for fast enzymatic degradation, particularly for truncated des-(Glu)5-MG members, such as MG11. FSC-based imaging probes were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, affinity and cell-uptake studies, stability and metabolite studies, as well as generation of corresponding metabolites by artificial enzymatic degradation) and in vivo (biodistribution in A431-CCK2R/A431-mock tumour xenografted BALB/c nude mice and stability in blood of living BALB/c mice and analysis of corresponding organ homogenates and urine to identify degradation products). In summary, multimerization was accompanied by partial improvement towards targeting abilities. Identified metabolites formed by artificial enzymatic cleavage of trimeric FSC-MG conjugates in vitro contained intact binding sequences for the receptor. Furthermore, the 68Ga-labelled trimers exhibiting increasing uptake of radioligand in tumour tissue over time and improved in vivo stability in blood samples of living animals of the trimers compared to corresponding mono- and dimers, strongly supporting our hypothesis.


Asunto(s)
Gastrinas , Radiofármacos , Receptor de Colecistoquinina B/metabolismo , Animales , Línea Celular Tumoral , Quelantes/química , Femenino , Compuestos Férricos/química , Radioisótopos de Galio , Gastrinas/química , Humanos , Ácidos Hidroxámicos/química , Riñón/metabolismo , Hígado/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Molecular , Trasplante de Neoplasias , Prueba de Estudio Conceptual , Multimerización de Proteína , Radiofármacos/síntesis química , Radiofármacos/química , Ratas Sprague-Dawley
16.
J Periodontol ; 89(8): 940-948, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29697142

RESUMEN

BACKGROUND: Studies have shown that medical devices comprising strontium contribute to bone healing and osseointegration. The aim of this study was to evaluate the in vivo performance of surface-functionalized implants (Ti-Sr-O) showing predictable release characteristics of strontium and compare it to performance a commercially available fluoride-modified surface. METHODS: Ti-Sr-O functionalized, fluoride-modified,  Grade 4 titanium implants were inserted in the femoral condyle of adult male New Zealand white rabbits. Atomic absorption spectrometry (AAS) was utilized to monitor strontium blood serum levels. Two weeks after insertion, histomorphometric evaluation was performed with respect to bone-to-implant contact (BIC%) and bone formation (BF%) using defined regions of interest. RESULTS: Mean values for BIC% showed a comparable degree of osseointegration for Ti-Sr-O and the fluoride-modified surface, while BF% revealed a significant difference in increased BF with Ti-Sr-O. AAS measurements did not indicate any influence of the Ti-Sr-O modified implants on the strontium blood serum concentrations. CONCLUSIONS: Within the limitations of this study, it was shown that the Ti-Sr-O coating, with sustained release characteristics of strontium, enhanced bone apposition and, thus, could find practical applications, e.g., within the field of medical implantology.


Asunto(s)
Implantes Dentales , Oseointegración , Animales , Materiales Biocompatibles Revestidos , Fluoruros , Masculino , Conejos , Estroncio , Propiedades de Superficie , Titanio
17.
Nat Commun ; 9(1): 1224, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581457

RESUMEN

The primary cilium emanates from the cell surface of growth-arrested cells and plays a central role in vertebrate development and tissue homeostasis. The mechanisms that control ciliogenesis have been extensively explored. However, the intersection between GPCR signaling and the ubiquitin pathway in the control of cilium stability are unknown. Here we observe that cAMP elevation promotes cilia resorption. At centriolar satellites, we identify a multimeric complex nucleated by PCM1 that includes two kinases, NEK10 and PKA, and the E3 ubiquitin ligase CHIP. We show that NEK10 is essential for ciliogenesis in mammals and for the development of medaka fish. PKA phosphorylation primes NEK10 for CHIP-mediated ubiquitination and proteolysis resulting in cilia resorption. Disarrangement of this control mechanism occurs in proliferative and genetic disorders. These findings unveil a pericentriolar kinase signalosome that efficiently links the cAMP cascade with the ubiquitin-proteasome system, thereby controlling essential aspects of ciliogenesis.


Asunto(s)
Cilios/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centriolos/metabolismo , Células HEK293 , Humanos , Hipogonadismo/genética , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/fisiología , Oryzias/embriología , Fosforilación , Proteolisis , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
Electrophoresis ; 39(9-10): 1208-1215, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29389038

RESUMEN

Capillary electrophoresis coupled to mass spectrometry is a very efficient analytical method for the analysis of post-translational modifications because of its high separation efficiency and high detection sensitivity. Here we applied CE-MS using three differently coated separation capillaries for in-depth analysis of a set of 70 synthetic post-translationally modified peptides (including phosphorylation, acetylation, methylation, and nitration). We evaluated the results in terms of peptide detection and separation characteristics and found that the use of a neutrally coated capillary resulted in highest overall signal intensity of singly modified peptides. In contrast, the use of a bare-fused silica capillary was superior in the identification of multi-phosphorylated peptides (12 out of 15 were identified). Fast separations of approximately 12 min could be achieved using a positively coated capillary, however, at the cost of separation efficiency. A comparison to nanoLC-MS revealed that multi-phosphorylated peptides interact with the RP material very poorly so that these peptides were either washed out or elute as very broad peaks from the nano column which results in a reduced peptide identification rate (7 out of 15). Moreover, the methods applied were found to be very well suited for the analysis of the acetylated, nitrated and methylated peptides. All 36 synthetic peptides, which exhibit one of those modifications, could be identified regardless of the method applied. As a final step in this study and as a proof of principle, the phosphoproteome enriched from PC-12 pheochromocytoma cells was analyzed by CE-MS resulting in 5686 identified and 4088 quantified phosphopeptides. We compared the characterized analytes to those identified by a nanoLC-MS proteomics study and found that less than one third of the phosphopeptides were identical, which demonstrates the benefit by combining different approaches quite impressively.


Asunto(s)
Electroforesis Capilar/métodos , Péptidos/análisis , Péptidos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteómica/métodos
19.
J Cell Biol ; 216(12): 4199-4215, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28993467

RESUMEN

Signaling from lysosomes controls cellular clearance and energy metabolism. Lysosomal malfunction has been implicated in several pathologies, including neurodegeneration, cancer, infection, immunodeficiency, and obesity. Interestingly, many functions are dependent on the organelle position. Lysosomal motility requires the integration of extracellular and intracellular signals that converge on a competition between motor proteins that ultimately control lysosomal movement on microtubules. Here, we identify a novel upstream control mechanism of Arl8b-dependent lysosomal movement toward the periphery of the cell. We show that the C-terminal domain of lyspersin, a subunit of BLOC-1-related complex (BORC), is essential and sufficient for BORC-dependent recruitment of Arl8b to lysosomes. In addition, we establish lyspersin as the linker between BORC and late endosomal/lysosomal adaptor and mitogen activated protein kinase and mechanistic target of rapamycin activator (LAMTOR) complexes and show that epidermal growth factor stimulation decreases LAMTOR/BORC association, thereby promoting BORC- and Arl8b-dependent lysosomal centrifugal transport.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Ribosilacion-ADP/genética , Proteínas Portadoras/genética , Endosomas/efectos de los fármacos , Endosomas/ultraestructura , Factor de Crecimiento Epidérmico/farmacología , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Movimiento , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Transducción de Señal
20.
Proteomics ; 17(22)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28940772

RESUMEN

In this study we demonstrate the potential of sequential injection of samples in capillary electrophoresis-mass spectrometry for rapid and sensitive proteome characterization of human lymphoblastic T-cells (line CCRF-CEM). Proteins were extracted, enzymatically digested, and the resulting peptides fractionated by RP-HPLC. Twenty fractions were thereafter analyzed by CE-MS within a single MS analysis. The CE-MS method was designed so that every 10 min a new fraction was injected into the CE system. Without any rinsing or equilibration steps we were able to generate a continuous stream of peptides feeding the mass analyzer. In 250 min, the total analysis time of a single sequential injection experiment, we were able to identify roughly 28 000 peptide sequences counting for 4800 proteins. These numbers could be increased to 62 000 peptides and more than 6100 proteins identified, when performing three experiments analyzing a total of 60 fractions, all within 12.5 h. We found that the electrophoretic mobility of peptides can be used to trace back peptides and assign them to the fraction they originate from.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Linfocitos T/química , Cromatografía Líquida de Alta Presión/métodos , Humanos , Fragmentos de Péptidos/análisis , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...