Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847487

RESUMEN

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Asunto(s)
Estrógenos , Ratones Endogámicos mdx , Músculo Esquelético , Proteínas de Unión al ARN , Animales , Femenino , Ratones , Estrógenos/metabolismo , Estrógenos/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Ratones Endogámicos C57BL , Ovariectomía , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos
2.
Prog Neurobiol ; 235: 102590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484964

RESUMEN

Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Humanos , Distrofina/genética , Miedo , Distrofia Muscular de Duchenne/genética , Mutación , Vertebrados
3.
Sci Rep ; 13(1): 5513, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015991

RESUMEN

Loss of function mutations in the gene encoding dystrophin elicits a hypersensitive fear response in mice and humans. In the dystrophin-deficient mdx mouse, this behaviour is partially protected by oestrogen, but the mechanistic basis for this protection is unknown. Here, we show that female mdx mice remain normotensive during restraint stress compared to a hypotensive and hypertensive response in male mdx and male/female wildtype mice, respectively. Partial dystrophin expression in female mdx mice (heterozygous) also elicited a hypertensive response. Ovariectomized (OVX) female mdx mice were used to explain the normotensive response to stress. OVX lowered skeletal muscle mass and lowered the adrenal mass and zona glomerulosa area (aldosterone synthesis) in female mdx mice. During a restraint stress, OVX dampened aldosterone synthesis and lowered the corticosterone:11-dehydrocorticosterone. All OVX-induced changes were restored with replacement of oestradiol, except that oestradiol lowered the zona fasciculata area of the adrenal gland, dampened corticosterone synthesis but increased cortisol synthesis. These data suggest that oestrogen partially attenuates the unconditioned fear response in mdx mice via adrenal and vascular function. It also suggests that partial dystrophin restoration in a dystrophin-deficient vertebrate is an effective approach to develop an appropriate hypertensive response to stress.


Asunto(s)
Distrofina , Miedo , Distrofia Muscular de Duchenne , Animales , Femenino , Humanos , Masculino , Ratones , Aldosterona , Corticosterona , Distrofina/metabolismo , Estradiol , Estrógenos , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética
4.
J Gen Physiol ; 155(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651896

RESUMEN

The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.


Asunto(s)
Distrofina , Contracción Muscular , Animales , Distrofina/genética , Contracción Muscular/fisiología , Músculo Esquelético , Membrana Celular , Fuerza Muscular/fisiología , Literatura de Revisión como Asunto
5.
Neurobiol Dis ; 162: 105559, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774794

RESUMEN

Skeletal muscle dysfunction may contribute to the progression and severity of amyotrophic lateral sclerosis (ALS). In the present study, we characterized the skeletal muscle pathophysiology in an inducible transgenic mouse model (rNLS8) that develops a TAR-DNA binding protein (TDP-43) proteinopathy and ALS-like neuropathology and disease progression; representative of >90% of all familial and sporadic ALS cases. As we previously observed elevated levels of miR-23a in skeletal muscle of patients with familial and sporadic ALS, we also investigated the effect of miR-23a suppression on skeletal muscle pathophysiology and disease severity in rNLS8 mice. Five weeks after disease onset TDP-43 protein accumulation was observed in tibialis anterior (TA), quadriceps (QUAD) and diaphragm muscle lysates and associated with skeletal muscle atrophy. In the TA muscle TDP-43 was detected in muscle fibres that appeared atrophied and angular in appearance and that also contained ß-amyloid aggregates. These fibres were also positive for neural cell adhesion molecule (NCAM), but not embryonic myosin heavy chain (eMHC), indicating TDP-43/ ß-amyloid localization in denervated muscle fibres. There was an upregulation of genes associated with myogenesis and NMJ degeneration and a decrease in the MURF1 atrophy-related protein in skeletal muscle. Suppression of miR-23a impaired rotarod performance and grip strength and accelerated body weight loss during early stages of disease progression. This was associated with increased AchRα mRNA expression and decreased protein levels of PGC-1α. The TDP-43 proteinopathy-induced impairment of whole body and skeletal muscle functional performance is associated with muscle wasting and elevated myogenic and NMJ stress markers. Suppressing miR-23a in the rNLS8 mouse model of ALS contributes to an early acceleration of disease progression as measured by decline in motor function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , MicroARNs , Proteinopatías TDP-43 , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , Proteinopatías TDP-43/genética
6.
Front Physiol ; 12: 757121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764884

RESUMEN

Weakness and atrophy are key features of Duchenne muscular dystrophy (DMD). Dystrophin is one of the many proteins within the dystrophin glycoprotein complex (DGC) that maintains plasmalemmal integrity and cellular homeostasis. The dystrophin-deficient mdx mouse is also predisposed to weakness, particularly when subjected to eccentric (ECC) contractions due to electrophysiological dysfunction of the plasmalemma. Here, we determined if maintenance of plasmalemmal excitability during and after a bout of ECC contractions is dependent on intact and functional DGCs rather than, solely, dystrophin expression. Wild-type (WT) and dystrophic mice (mdx, mL172H and Sgcb-/- mimicking Duchenne, Becker and Limb-girdle Type 2E muscular dystrophies, respectively) with varying levels of dystrophin and DGC functionality performed 50 maximal ECC contractions with simultaneous torque and electromyographic measurements (M-wave root-mean-square, M-wave RMS). ECC contractions caused all mouse lines to lose torque (p<0.001); however, deficits were greater in dystrophic mouse lines compared to WT mice (p<0.001). Loss of ECC torque did not correspond to a reduction in M-wave RMS in WT mice (p=0.080), while deficits in M-wave RMS exceeded 50% in all dystrophic mouse lines (p≤0.007). Moreover, reductions in ECC torque and M-wave RMS were greater in mdx mice compared to mL172H mice (p≤0.042). No differences were observed between mdx and Sgcb-/- mice (p≥0.337). Regression analysis revealed ≥98% of the variance in ECC torque loss could be explained by the variance in M-wave RMS in dystrophic mouse lines (p<0.001) but not within WT mice (R 2=0.211; p=0.155). By comparing mouse lines that had varying amounts and functionality of dystrophin and other DGC proteins, we observed that (1) when all DGCs are intact, plasmalemmal action potential generation and conduction is maintained, (2) deficiency of the DGC protein ß-sarcoglycan is as disruptive to plasmalemmal excitability as is dystrophin deficiency and, (3) some functionally intact DGCs are better than none. Our results highlight the significant role of the DGC plays in maintaining plasmalemmal excitability and that a collective synergism (via each DGC protein) is required for this complex to function properly during ECC contractions.

7.
FASEB J ; 35(12): e22034, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34780665

RESUMEN

Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.


Asunto(s)
Conducta Animal , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Condicionamiento Físico Animal , Estrés Psicológico/complicaciones , Animales , Modelos Animales de Enfermedad , Distrofina/deficiencia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular Animal/etiología , Distrofia Muscular Animal/psicología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/psicología , Factores Sexuales
9.
Exp Physiol ; 106(7): 1597-1611, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963617

RESUMEN

NEW FINDINGS: What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT: Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.


Asunto(s)
Distrofia Muscular de Duchenne , Fosforilación Oxidativa , Citoesqueleto de Actina/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Proteínas de Microfilamentos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
10.
Muscle Nerve ; 64(2): 190-198, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974714

RESUMEN

INTRODUCTION/AIMS: Clinical trials addressing treatments for Duchenne muscular dystrophy (DMD) require reliable and valid measurement of muscle contractile function across all disease severity levels. In this work we aimed to evaluate a protocol combining voluntary and evoked contractions to measure strength and excitability of wrist extensor muscles for safety, feasibility, reliability, and discriminant validity between males with DMD and controls. METHODS: Wrist extensor muscle strength and excitability were assessed in males with DMD (N = 10; mean ± standard deviation: 15.4 ± 5.9 years of age), using the Brooke Upper Extremity Rating Scale (scored 1-6), and age-matched healthy male controls (N = 15; 15.5 ± 5.0 years of age). Torque and electromyographic (EMG) measurements were analyzed under maximum voluntary and stimulated conditions at two visits. RESULTS: A protocol of multiple maximal voluntary contractions (MVCs) and evoked twitch contractions was feasible and safe, with 96% of the participants completing the protocol and having a less than 7% strength decrement on either measure for both DMD patients and controls (P ≥ .074). Reliability was excellent for voluntary and evoked measurements of torque and EMG (intraclass correlation coefficient [ICC] over 0.90 and over 0.85 within and between visits, respectively). Torque, EMG, and timing of twitch-onset measurements discriminated between DMD and controls (P < .001). Twitch contraction time did not differ significantly between groups (P = .10). DISCUSSION: Findings from this study show that the protocol is a safe, feasible, reliable, and a valid method to measure strength and excitability of wrist extensors in males with DMD.


Asunto(s)
Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Adolescente , Adulto , Niño , Electromiografía/métodos , Estudios de Factibilidad , Humanos , Contracción Isométrica/fisiología , Masculino , Adulto Joven
11.
FASEB J ; 35(4): e21489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33734502

RESUMEN

Psychosocial stressors can cause physical inactivity, cardiac damage, and hypotension-induced death in the mdx mouse model of Duchenne muscular dystrophy (DMD). Because repeated exposure to mild stress can lead to habituation in wild-type mice, we investigated the response of mdx mice to a mild, daily stress to determine whether habituation occurred. Male mdx mice were exposed to a 30-sec scruff restraint daily for 12 weeks. Scruff restraint induced immediate physical inactivity that persisted for at least 60 minutes, and this inactivity response was just as robust after 12 weeks as it was after one day. Physical inactivity in the mdx mice was not associated with acute skeletal muscle contractile dysfunction. However, skeletal muscle of mdx mice that were repeatedly stressed had slow-twitch and tetanic relaxation times and trended toward high passive stiffness, possibly due to a small but significant increase in muscle fibrosis. Elevated urinary corticosterone secretion, adrenal hypertrophy, and a larger adrenal cortex indicating chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis were measured in 12-week stressed mdx mice relative to those unstressed. However, pharmacological inhibition of the HPA axis did not affect scruff-induced physical inactivity and acute corticosterone injection did not recapitulate the scruff-induced phenotype, suggesting the HPA axis is not the driver of physical inactivity. Our results indicate that the response of mdx mice to an acute mild stress is non-habituating and that when that stressor is repeated daily for weeks, it is sufficient to exacerbate some phenotypes associated with dystrophinopathy in mdx mice.


Asunto(s)
Distrofina/deficiencia , Sistema Hipotálamo-Hipofisario/fisiopatología , Fenotipo , Animales , Modelos Animales de Enfermedad , Corazón/fisiopatología , Ratones Endogámicos mdx , Ratones Transgénicos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , Sistema Hipófiso-Suprarrenal/fisiopatología
12.
Acta Physiol (Oxf) ; 231(4): e13627, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33580591

RESUMEN

AIM: Loss of dystrophin causes oxidative stress and affects nitric oxide synthase-mediated vascular function in striated muscle. Because tetrahydrobiopterin is an antioxidant and co-factor for nitric oxide synthase, we tested the hypothesis that tetrahydrobiopterin would be low in mdx mice and humans deficient for dystrophin. METHODS: Tetrahydrobiopterin and its metabolites were measured at rest and in response to exercise in Duchenne and Becker muscular dystrophy patients, age-matched male controls as well as wild-type, mdx and mdx mice transgenically overexpressing skeletal muscle-specific dystrophins. Mdx mice were also supplemented with tetrahydrobiopterin and pathophysiology was assessed. RESULTS: Duchenne muscular dystrophy patients had lower urinary dihydrobiopterin + tetrahydrobiopterin/specific gravity1.020 compared to unaffected age-matched males and Becker muscular dystrophy patients. Mdx mice had low urinary and skeletal muscle dihydrobiopterin + tetrahydrobiopterin compared to wild-type mice. Overexpression of dystrophins that localize neuronal nitric oxide synthase restored dihydrobiopterin + tetrahydrobiopterin in mdx mice to wild-type levels while utrophin overexpression did not. Mdx mice and Duchenne muscular dystrophy patients did not increase tetrahydrobiopterin during exercise and in mdx mice tetrahydrobiopterin deficiency was likely because of lower levels of sepiapterin reductase in skeletal muscle. Tetrahydrobiopterin supplementation improved skeletal muscle strength, resistance to fatiguing and injurious contractions in vivo, increased utrophin and capillary density of skeletal muscle and lowered cardiac muscle fibrosis and left ventricular wall thickness in mdx mice. CONCLUSION: These data demonstrate that impaired tetrahydrobiopterin synthesis is associated with dystrophin loss and treatment with tetrahydrobiopterin improves striated muscle histopathology and skeletal muscle function in mdx mice.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Biopterinas/análogos & derivados , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético , Utrofina
13.
J Strength Cond Res ; 35(2): 576-584, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337696

RESUMEN

ABSTRACT: Lindsay, A, Abbott, G, Ingalls, CP, and Baumann, CW. Muscle strength does not adapt from a second to third bout of eccentric contractions: A systematic review and meta-analysis of the repeated bout effect. J Strength Cond Res 35(2): 576-584, 2021-The greatest muscle strength adaptations to repeated bouts of eccentric contractions (ECC) occur after the initial injury, with little to no change in subsequent bouts. However, because of the disparity in injury models, it is unknown whether three or more bouts provide further adaptation. Therefore, we performed a systematic review of the literature to evaluate whether a third bout of skeletal muscle ECC impacts immediate strength loss and rate of strength recovery compared with a second bout. A search of the literature in Web of Science, SCOPUS, Medline, and the American College of Sports Medicine database was conducted between May and September 2019 using the keywords eccentric contraction or lengthening contraction and muscle and repeated or multiple, and bout. Eleven studies with 12 experimental groups, using 72 human subjects, 48 mice, and 11 rabbits, met the inclusion criteria. A meta-analysis using a random effects model and effect sizes (ESs; Hedges' g) calculated from the standardized mean differences was completed. Calculated ESs for immediate strength loss provided no evidence that a third bout of ECC results in greater loss of strength compared with a second bout (ES = -0.12, 95% confidence interval [CI] = -0.41 to 0.17). Furthermore, the rate of strength recovery was not different between a second and third bout (ES = -0.15, 95% CI = -1.01 to 0.70). These results indicate a third bout of skeletal muscle ECC does not improve indices of strength loss or rate of strength recovery compared with a second bout. Therefore, coaches and athletes should expect some level of persistent weakness after each of their initial training sessions involving ECC, and the faster recovery of strength deficits in the second bout documented by previous research is not different from a third bout.


Asunto(s)
Músculo Esquelético , Deportes , Adaptación Fisiológica , Animales , Ratones , Contracción Muscular , Fuerza Muscular , Conejos
14.
J Endocrinol ; 248(2): 181-191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33295882

RESUMEN

The actions of selective estrogen receptor modulators are tissue dependent. The primary objective of the current study was to determine the tissue selective effects of bazedoxifene (BZA) on the musculoskeletal system of ovariectomized (OVX) female mice, focusing on the strengths of muscle-bone pairs in the lower hindlimb. Treatment with BZA after ovariectomy (OVX+BZA) did not prevent body or fat mass gains (P < 0.05). In vivo plantarflexor muscle isometric torque was not affected by treatment with BZA (P = 0.522). Soleus muscle peak isometric, concentric and eccentric tetanic force production were greater in OVX+BZA mice compared to OVX+E2 mice (P ≤ 0.048) with no effect on maximal isometric specific force (P = 0.228). Tibia from OVX+BZA mice had greater cortical cross-sectional area and moment of inertia than OVX mice treated with placebo (P < 0.001), but there was no impact of BZA treatment on cortical bone mineral density, cortical thickness, tibial bone ultimate load or stiffness (P ≥ 0.086). Overall, these results indicate that BZA may be an estrogen receptor agonist in skeletal muscle, as it has previously been shown in bone, providing minor benefits to the musculoskeletal system.


Asunto(s)
Estrógenos/farmacología , Indoles/farmacología , Actividad Motora/efectos de los fármacos , Sistema Musculoesquelético/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Animales , Evaluación Preclínica de Medicamentos , Femenino , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Ovariectomía , Distribución Aleatoria , Tibia/efectos de los fármacos
15.
Redox Biol ; 37: 101730, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33002761

RESUMEN

The highly ordered cortical microtubule lattice of skeletal muscle is disorganized in dystrophin-deficient mdx mice. Implicated mechanisms include loss of dystrophin binding, altered α-tubulin posttranslational modification, expression of a ß-tubulin involved in regeneration, and reactive oxygen species (ROS). Here we show that the transverse microtubules in mdx muscle expressing miniaturized dystrophins are rapidly lost after eccentric contraction. Analysis of mdx lines expressing different dystrophin constructs demonstrate that spectrin-like repeats R4-15 and R20-23 were required for mechanically stable microtubules. Microtubule loss was prevented by the non-specific antioxidant N-acetylcysteine while inhibition of NADPH oxidase 2 had only a partial effect, suggesting that ROS from multiple sources mediate the rapid loss of transverse microtubules after eccentric contraction. Finally, ablation of α-dystrobrevin, ß- or γ-cytoplasmic actin phenocopied the transverse microtubule instability of miniaturized dystrophins. Our data demonstrate that multiple dystrophin domains, α-dystrobrevin and cytoplasmic actins are necessary for mechanically stable microtubules.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Ratones , Ratones Endogámicos mdx , Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Oxidación-Reducción
16.
Am J Physiol Endocrinol Metab ; 319(6): E1008-E1018, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954829

RESUMEN

Skeletal muscle is sensitive to environmental cues that are first present in utero. Maternal overnutrition is a model of impaired muscle development leading to structural and metabolic dysfunction in adult life. In this study, we investigated the effect of an obesogenic maternal environment on growth and postnatal myogenesis in the offspring. Male C57BL/6J mice born to chow- or high-fat-diet-fed mothers were allocated to four different groups at the end of weaning. For the following 10 wk, half of the pups were maintained on the same diet as their mother and half of the pups were switched to the other diet (chow or high-fat). At 12 wk of age, muscle injury was induced using an intramuscular injection of barium chloride. Seven days later, mice were humanely killed and muscle tissue was harvested. A high-fat maternal diet impaired offspring growth patterns and downregulated satellite cell activation and markers of postnatal myogenesis 7 days after injury without altering the number of newly synthetized fibers over the whole 7-day period. Importantly, a healthy postnatal diet could not reverse any of these effects. In addition, we demonstrated that postnatal myogenesis was associated with a diet-independent upregulation of three miRNAs, mmu-miR-31-5p, mmu-miR-136-5p, and mmu-miR-296-5p. Furthermore, in vitro analysis confirmed the role of these miRNAs in myocyte proliferation. Our findings are the first to demonstrate that maternal overnutrition impairs markers of postnatal myogenesis in the offspring and are particularly relevant to today's society where the incidence of overweight/obesity in women of childbearing age is increasing.


Asunto(s)
Dieta Alta en Grasa , Crecimiento y Desarrollo/fisiología , Desarrollo de Músculos/fisiología , Efectos Tardíos de la Exposición Prenatal , Células Satélite del Músculo Esquelético/fisiología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Hipernutrición/complicaciones , Hipernutrición/fisiopatología , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología
17.
Free Radic Res ; 54(5): 341-350, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32375530

RESUMEN

7,8-Dihydroneopterin protects cells intracellularly from oxidative stress-induced death, but its mode of transport across the cell membrane is unknown. Nucleosides, such as guanosine, are transported via nucleoside transporters of the equilibrative and concentrative forms. Therefore, the objective of this study was to identify which membrane transporters are responsible for 7,8-dihydroneopterin transport in cells and whether this is necessary for protection against oxidative stress. Monocytic cell lines U937, THP-1 and human monocytes were incubated with varying concentrations of 7,8-dihydroneopterin with or without nucleoside transporter inhibitors nitrobenzylthioinosine (NBMPR; ENT1), dipyridamole (DP; ENT1 and ENT2) or indomethacin (INDO; CNT). Only DP inhibited 7,8-dihydroneopterin uptake in U937 cells, while NBMPR and DP inhibited 7,8-dihydroneopterin uptake in THP-1 cells. All three inhibitors limited 7,8-dihydroneopterin uptake in human monocytes at short time points only. When the cells were incubated with 10 mM of the peroxyl radical generator 2,2'-azobis-2-methyl-propanimidamide, dihydrochloride (AAPH) a 50-80% loss of cell viability was measured. 7,8-dihydroneopterin protected all cell lines against AAPH-induced cell death, which was prevented with DP in U937 cells, NBMPR in THP-1 cells and a combination of all three nucleoside inhibitors in human monocytes. These data indicate 7,8-dihydroneopterin is transported across the cell membrane of monocytic cells via equilibrative and concentrative nucleoside transporters in a cell lineage-dependent manner. The data also indicate protection from peroxyl radical-generated cell death with 7,8-dihydroneopterin is intracellular and facilitated through nucleoside transporters in monocytic cells.


Asunto(s)
Antioxidantes/farmacología , Monocitos/efectos de los fármacos , Neopterin/análogos & derivados , Proteínas de Transporte de Nucleósidos/metabolismo , Antioxidantes/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Monocitos/metabolismo , Neopterin/metabolismo , Neopterin/farmacología , Relación Estructura-Actividad , Células THP-1 , Células U937
18.
J Clin Invest ; 130(5): 2465-2477, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32250341

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is caused by loss of repression of the DUX4 gene; however, the DUX4 protein is rare and difficult to detect in human muscle biopsies, and pathological mechanisms are obscure. FSHD is also a chronic disease that progresses slowly over decades. We used the sporadic, low-level, muscle-specific expression of DUX4 enabled by the iDUX4pA-HSA mouse to develop a chronic long-term muscle disease model. After 6 months of extremely low sporadic DUX4 expression, dystrophic muscle presented hallmarks of FSHD histopathology, including muscle degeneration, capillary loss, fibrosis, and atrophy. We investigated the transcriptional profile of whole muscle as well as endothelial cells and fibroadiopogenic progenitors (FAPs). Strikingly, differential gene expression profiles of both whole muscle and, to a lesser extent, FAPs, showed significant overlap with transcriptional profiles of MRI-guided human FSHD muscle biopsies. These results demonstrate a pathophysiological similarity between disease in muscles of iDUX4pA-HSA mice and humans with FSHD, solidifying the value of chronic rare DUX4 expression in mice for modeling pathological mechanisms in FSHD and highlighting the importance FAPs in this disease.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Transcripción Genética , Animales , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/patología , Femenino , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología
19.
EBioMedicine ; 55: 102700, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32192914

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life. METHODS: The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses. A subgroup of mdx mice exposed to subordination stress were pretreated with the beta-blocker metoprolol. FINDINGS: Subordination stress caused lethality in ∼30% of mdx mice within 24 h and ∼70% lethality within 48 h, which was not rescued by metoprolol. Lethality was associated with heart damage, waddling gait and hypo-locomotion, as well as marked up-regulation of the hypothalamus-pituitary-adrenocortical axis. A novel cardiovascular phenotype emerged in mdx mice, in that scruffing caused a transient drop in arterial pressure, while subordination stress caused severe and sustained hypotension with concurrent tachycardia. Transgenic expression of dystrophin or utrophin in skeletal muscle protected mdx mice from scruffing and social stress-induced responses including mortality. INTERPRETATION: We have identified a robust new stress phenotype in the otherwise mildly affected mdx mouse that suggests relatively benign handling may impact the outcome of behavioural experiments, but which should also expedite the knowledge-based therapy development for DMD. FUNDING: Greg Marzolf Jr. Foundation, Summer's Wish Fund, NIAMS, Muscular Dystrophy Association, University of Minnesota and John and Cheri Gunvalson Trust.


Asunto(s)
Distrofina/genética , Trastornos Neurológicos de la Marcha/mortalidad , Insuficiencia Cardíaca/mortalidad , Distrofia Muscular de Duchenne/mortalidad , Estrés Psicológico/mortalidad , Utrofina/genética , Antagonistas Adrenérgicos beta/farmacología , Animales , Presión Arterial/efectos de los fármacos , Modelos Animales de Enfermedad , Distrofina/metabolismo , Trastornos Neurológicos de la Marcha/complicaciones , Trastornos Neurológicos de la Marcha/genética , Trastornos Neurológicos de la Marcha/fisiopatología , Expresión Génica , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipotensión/complicaciones , Hipotensión/genética , Hipotensión/mortalidad , Hipotensión/fisiopatología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Metoprolol/farmacología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Análisis de Supervivencia , Taquicardia/complicaciones , Taquicardia/genética , Taquicardia/mortalidad , Taquicardia/fisiopatología , Transgenes , Utrofina/metabolismo
20.
Skelet Muscle ; 10(1): 3, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007101

RESUMEN

BACKGROUND: Dystrophin deficiency sensitizes skeletal muscle of mice to eccentric contraction (ECC)-induced strength loss. ECC protocols distinguish dystrophin-deficient from healthy, wild type muscle, and test the efficacy of therapeutics for Duchenne muscular dystrophy (DMD). However, given the large lab-to-lab variability in ECC-induced strength loss of dystrophin-deficient mouse skeletal muscle (10-95%), mechanical factors of the contraction likely impact the degree of loss. Therefore, the purpose of this study was to evaluate the extent to which mechanical variables impact sensitivity of dystrophin-deficient mouse skeletal muscle to ECC. METHODS: We completed ex vivo and in vivo muscle preparations of the dystrophin-deficient mdx mouse and designed ECC protocols within physiological ranges of contractile parameters (length change, velocity, contraction duration, and stimulation frequencies). To determine whether these contractile parameters affected known factors associated with ECC-induced strength loss, we measured sarcolemmal damage after ECC as well as strength loss in the presence of the antioxidant N-acetylcysteine (NAC) and small molecule calcium modulators that increase SERCA activity (DS-11966966 and CDN1163) or lower calcium leak from the ryanodine receptor (Chloroxine and Myricetin). RESULTS: The magnitude of length change, work, and stimulation duration ex vivo and in vivo of an ECC were the most important determinants of strength loss in mdx muscle. Passive lengthening and submaximal stimulations did not induce strength loss. We further showed that sarcolemmal permeability was associated with muscle length change, but it only accounted for a minimal fraction (21%) of the total strength loss (70%). The magnitude of length change also significantly influenced the degree to which NAC and small molecule calcium modulators protected against ECC-induced strength loss. CONCLUSIONS: These results indicate that ECC-induced strength loss of mdx skeletal muscle is dependent on the mechanical properties of the contraction and that mdx muscle is insensitive to ECC at submaximal stimulation frequencies. Rigorous design of ECC protocols is critical for effective use of strength loss as a readout in evaluating potential therapeutics for muscular dystrophy.


Asunto(s)
Contracción Muscular , Fuerza Muscular , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Acetilcisteína/farmacología , Aminoquinolinas/farmacología , Animales , Antioxidantes/farmacología , Benzamidas/farmacología , Calcio/metabolismo , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Cloroquinolinoles/farmacología , Flavonoides/farmacología , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA