Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 6866-6879, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38437011

RESUMEN

Activity descriptors are a powerful tool for the design of catalysts that can efficiently utilize H2 with minimal energy losses. In this study, we develop the use of hydricity and H- self-exchange rates as thermodynamic and kinetic descriptors for the hydrogenation of ketones by molecular catalysts. Two complexes with known hydricity, HRh(dmpe)2 and HCo(dmpe)2, were investigated for the catalytic hydrogenation of ketones under mild conditions (1.5 atm and 25 °C). The rhodium catalyst proved to be an efficient catalyst for a wide range of ketones, whereas the cobalt catalyst could only hydrogenate electron-deficient ketones. Using a combination of experiment and electronic structure theory, thermodynamic hydricity values were established for 46 alkoxide/ketone pairs in both acetonitrile and tetrahydrofuran solvents. Through comparison of the hydricities of the catalysts and substrates, it was determined that catalysis was observed only for catalyst/ketone pairs with an exergonic H- transfer step. Mechanistic studies revealed that H- transfer was the rate-limiting step for catalysis, allowing for the experimental and computation construction of linear free-energy relationships (LFERs) for H- transfer. Further analysis revealed that the LFERs could be reproduced using Marcus theory, in which the H- self-exchange rates for the HRh/Rh+ and ketone/alkoxide pairs were used to predict the experimentally measured catalytic barriers within 2 kcal mol-1. These studies significantly expand the scope of catalytic reactions that can be analyzed with a thermodynamic hydricity descriptor and firmly establish Marcus theory as a valid approach to develop kinetic descriptors for designing catalysts for H- transfer reactions.

2.
Inorg Chem ; 60(22): 17132-17140, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723498

RESUMEN

The free energy for hydride transfer reactions of transition metal hydrides is known to be influenced by solvent effects. The first-row transition metal hydride [HNi(dmpe)2][BF4] (dmpe = 1,2-bis(dimethylphosphino)ethane) has starkly different hydride transfer reactivities with CO2 in different solvents. A binary mixture of water and acetonitrile was used to tune the hydride transfer reactivity of HNi(dmpe)2+ with CO2 so that the free energy for this reaction approached zero. Various mole fractions of water were tested and a linear relationship between the hydride transfer free energy and solvent composition was established for 0-0.24 mole fraction of water. A deviation from linearity was found upon moving toward higher mole fractions of water. The tuning of the free energy for hydride transfer allowed HNi(dmpe)2+ to be used as a catalyst for the hydrogenation of CO2. The optimized catalyst conditions produced 58 turnovers at room temperature in 0.082 mole fraction of water using 60 atm of a 1:1 mixture of H2 to CO2 gas.

3.
Rev Sci Instrum ; 91(9): 094102, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33003775

RESUMEN

This work presents a new technique for evaluating the solid-liquid phase transformations in complex diesel fuel blends and diesel surrogates under high-pressure conditions intended to simulate those occurring in vehicle fuel injectors. A high-pressure apparatus based on a visual identification of freezing and thawing has been designed and built to monitor phase behavior and determine the crystallization temperature of complex fuels to predict wax precipitation. The proposed methodology was validated using pure substances-n-hexadecane (C16H34), cyclohexane (C6H12), and a mixture of 0.5848 mol fraction n-hexadecane in cyclohexane. The crystallization temperatures of these compounds were measured from atmospheric pressure to 400 MPa for temperatures varying from 290 K to 363 K and compared to those reported in the literature. The standard error of the estimated temperatures for the experimental data obtained in this work, based on a given pressure, was compared to data from the literature. This methodology will be extended to investigate the properties of more complex fuel mixtures.

4.
Chem Sci ; 10(29): 7029-7042, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31588270

RESUMEN

Understanding H2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H2 with protons and electrons. This work reports the first thermodynamic and kinetic H2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al (1), Ga (2), and In (3), and L = [N(o-(NCH2PiPr2)C6H4)3]3-. Thermodynamic free energies (ΔG°) and free energies of activation (ΔG ‡) for binding equilibria were obtained via variable-temperature 31P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H2 and N2 binding to Ni, with ΔG° values for H2 binding found to span nearly the entire range of previous reports. The non-classical H2 adduct, (η2-H2)NiInL (3-H2), was structurally characterized by single-crystal neutron diffraction-the first such study for a Ni(η2-H2) complex or any d10 M(η2-H2) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H2 binding primarily occurs via H-H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M(iii) dative interaction increases for the larger M(iii) ions. Linear free-energy relationships are discussed, with the activation barrier for H2 binding (ΔG ‡) found to decrease proportionally for more thermodynamically favorable equilibria. The ΔG° values for H2 and N2 binding to NiML complexes were also found to be more exergonic for the larger M(iii) ions.

5.
Faraday Discuss ; 215(0): 123-140, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-30993272

RESUMEN

To explore the influence of a biologically inspired second and outer coordination sphere on Rh-bis(diphosphine) CO2 hydrogenation catalysts, a series of five complexes were prepared by varying the substituents on the pendant amine in the P(Et)2CH2NRCH2P(Et)2 ligands (PEtNRPEt), where R consists of methyl ester modified amino acids, including three neutral (glycine methyl ester (GlyOMe), leucine methyl ester (LeuOMe), and phenylalanine methyl ester (PheOMe)), one acidic (aspartic acid dimethyl ester (AspOMe)) and one basic (histidine methyl ester (MeHisOMe)) amino acid esters. The turnover frequencies (TOFs) for CO2 hydrogenation for each of these complexes were compared to those of the non-amino acid containing [Rh(depp)2]+ (depp) and [Rh(PEtNMePEt)2]+ (NMe) complexes. Each complex is catalytically active for CO2 hydrogenation to formate under mild conditions in THF. Catalytic activity spanned a factor of four, with the most active species being the NMe catalyst, while the slowest were the GlyOMe and the AspOMe complexes. When compared to a similar set of catalysts with phenyl-substituted phosphorous groups, a clear contribution of the outer coordination sphere is seen for this family of CO2 hydrogenation catalysts.


Asunto(s)
Aminoácidos/química , Dióxido de Carbono/química , Complejos de Coordinación/química , Fosfinas/química , Rodio/química , Complejos de Coordinación/síntesis química , Técnicas Electroquímicas , Hidrogenación , Conformación Molecular
6.
Chemistry ; 24(64): 16964-16971, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29876973

RESUMEN

Molecular catalysts for hydrogenation of CO2 are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO2 hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes relative to the hydride acceptor ability of CO2 . In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO2 . Additionally, the solvent can impact catalysis by converting CO2 into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems.

7.
J Am Chem Soc ; 139(36): 12638-12646, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28862847

RESUMEN

Addition of high pressures of H2 to five-coordinate [(tBu)4(POCOP)Ir(CO)(H)]OTf [(tBu)4(POCOP) = κ3-C6H3-2,6-(OP(tBu)2)2] complexes results in observation of two new iridium-dihydrogen complexes. If the aryl moiety of the POCOP ligand is substituted with an electron withdrawing protonated dimethylamino group at the para position, hydrogen coordination is enhanced. Five-coordinate Ir-H complexes generated by addition of triflic acid to (tBu)4(POCOP)Ir(CO) species show an Ir-H 1H NMR chemical shift dependence on the number of equivalents of acid present. It is proposed that excess triflic acid in solution facilitates triflate dissociation from iridium, resulting in unsaturated five-coordinate Ir-H complexes. The five-coordinate iridium-hydride complexes were found to catalyze H/D exchange between H2 and CD3OD. The existence of the dihydrogen complexes, as well as isotope exchange reactions, provide evidence for proposed ionic hydrogenation intermediates for glycerol deoxygenation.

8.
J Am Chem Soc ; 139(40): 14244-14250, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28898066

RESUMEN

Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centered catalysts. The Lewis acidic Ga(III) ion plays a pivotal role in stabilizing catalytic intermediates, including a rare anionic d10 Ni hydride. Structural and in situ characterization of this reactive intermediate support a terminal Ni-H moiety, for which the thermodynamic hydride donor strength rivals those of precious metal hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis.

9.
Angew Chem Int Ed Engl ; 56(47): 15002-15005, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28961358

RESUMEN

A critical scientific challenge for utilization of CO2 is the development of catalyst systems that function in water and use inexpensive and environmentally friendly reagents. We have used thermodynamic insights to predict and demonstrate that the HCoI (dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water owing to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity.

10.
Inorg Chem ; 56(14): 8580-8589, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28657717

RESUMEN

Large-scale implementation of carbon neutral energy sources such as solar and wind will require the development of energy storage mechanisms. The hydrogenation of CO2 into formic acid or methanol could function as a means to store energy in a chemical bond. The catalyst reported here operates under low pressure, at room temperature, and in the presence of a base much milder (7 pKa units lower) than the previously reported CO2 hydrogenation catalyst, Co(dmpe)2H. The Co(I) tetraphosphine complex, [Co(L3)(CH3CN)]BF4, where L3 = 1,5-diphenyl-3,7-bis(diphenylphosphino)propyl-1,5-diaza-3,7-diphosphacyclooctane (0.31 mM), catalyzes CO2 hydrogenation with an initial turnover frequency of 150(20) h-1 at 25 °C, 1.7 atm of a 1:1 mixture of H2 and CO2, and 0.6 M 2-tert-butyl-1,1,3,3-tetramethylguanidine.

11.
J Am Chem Soc ; 138(31): 9968-77, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27434540

RESUMEN

The copper(I) triphosphine complex LCu(MeCN)PF6 (L = 1,1,1-tris(diphenylphosphinomethyl)ethane), which we recently demonstrated is an active catalyst precursor for hydrogenation of CO2 to formate, reacts with H2 in the presence of a base to form a cationic dicopper hydride, [(LCu)2H]PF6. [(LCu)2H](+) is also an active precursor for catalytic CO2 hydrogenation, with equivalent activity to that of LCu(MeCN)(+), and therefore may be a relevant catalytic intermediate. The thermodynamic hydricity of [(LCu)2H](+) was determined to be 41.0 kcal/mol by measuring the equilibrium constant for this reaction using three different bases. [(LCu)2H](+) and the previously reported dimer (LCuH)2 can be synthesized by the reaction of LCu(MeCN)(+) with 0.5 and 1 equiv of KB(O(i)Pr)3H, respectively. The solid-state structure of [(LCu)2H](+) shows threefold symmetry about a linear Cu-H-Cu axis and significant steric strain imposed by bringing two LCu(+) units together around the small hydride ligand. [(LCu)2H](+) reacts stoichiometrically with CO2 to generate the formate complex LCuO2CH and the solvento complex LCu(MeCN)(+). The rate of the stoichiometric reaction between [(LCu)2H](+) and CO2 is dramatically increased in the presence of bases that coordinate strongly to the copper center, e.g. DBU and TMG. In the absence of CO2, the addition of a large excess of DBU to [(LCu)2H](+) results in an equilibrium that forms LCu(DBU)(+) and also presumably the mononuclear hydride LCuH, which is not directly observed. Due to the significantly enhanced CO2 reactivity of [(LCu)2H](+) under these catalytically relevant conditions, LCuH is proposed to be the catalytically active metal hydride.

12.
Dalton Trans ; 45(24): 10017-23, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27071366

RESUMEN

The thermodynamic hydricity of a metal hydride can vary considerably between solvents. This parameter can be used to determine the favourability of a hydride-transfer reaction, such as the reaction between a metal hydride and CO2 to produce formate. Because the hydricities of these species do not vary consistently between solvents, reactions that are thermodynamically unfavourable in one solvent can be favourable in others. The hydricity of a water-soluble, bis-phosphine nickel hydride complex was compared to the hydricity of formate in water and in acetonitrile. Formate is a better hydride donor than [HNi(dmpe)2](+) by 7 kcal mol(-1) in acetonitrile, and no hydride transfer from [HNi(dmpe)2](+) to CO2 occurs in this solvent. The hydricity of [HNi(dmpe)2](+) is greatly improved in water relative to acetonitrile, in that reduction of CO2 to formate by [HNi(dmpe)2](+) was found to be thermodynamically downhill by 8 kcal mol(-1). Catalysis for the hydrogenation of CO2 was pursued, but the regeneration of [HNi(dmpe)2] under catalytic conditions was unfavourable. However, the present results demonstrate that the solvent dependence of thermodynamic parameters such as hydricity and acidity can be exploited in order to produce systems with balanced or favourable overall thermodynamics. This approach should be advantageous for the design of future water-soluble catalysts.

13.
Dalton Trans ; 44(33): 14854-64, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26223209

RESUMEN

Inspired by nature's ability to regulate catalysis using physiological stimuli, azobenzene was incorporated into Rh(bis)diphosphine CO2 hydrogenation catalysts to photoinitiate structural changes to modulate the resulting catalytic activity. The rhodium bound diphosphine ligands (P(Ph2)-CH2-N(R)-CH2-P(Ph2)) contain the terminal amine of a non-natural amino acid, with the R-group being either ß-alanine (ß-Ala) or γ-aminobutyric acid (GABA). For both ß-Ala and GABA containing complexes, the carboxylic acids of the amino acids were coupled to the amines of diaminoazobenzene, creating a complex consisting of a rhodium bound to a photo-responsive tetradentate ligand. The photo-induced cis-trans isomerization of the azobenzene-containing complexes imposes structural changes on these complexes, as evidenced by NMR studies. We found that the CO2 hydrogenation activity for the ß-Ala bound rhodium complex is 40% faster at 27 °C with the light on, i.e. azobenzene in the cis-conformation (TOF = 16 s(-1)) than when the complex was in the dark and the azobenzene in the trans-conformation (TOF = 11 s(-1)). In contrast the γ-aminobutyric acid containing rhodium complex has the same rate (TOF ∼17 s(-1)) with the azobenzene in either the cis or the trans-conformation at 27 °C. The corresponding (bis)diphosphine complexes without the attached azobenzene were also prepared, characterized, and catalytically tested for comparison, and have TOF's of 30 s(-1). Computational studies were undertaken to evaluate if the difference in rate between the cis- and trans-azobenzene isomers for the ß-Ala bound rhodium complex were due to structural differences. These computational investigations revealed major structural changes between all cis- and trans-azobenzene structures, but only minor structural changes that would be unique to the ß-Ala bound rhodium complex. We postulate that the different rates between the cis- and trans-azobenzene ß-Ala bound containing rhodium complexes are due to subtle changes in the bite angle arising from steric strain due to the azobenzene-containing tetradentate ligand. This strain alters the hydricity of the subsequent rhodium hydride and consequently the rate.

14.
Inorg Chem ; 53(18): 9849-54, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25170785

RESUMEN

Combined capture of CO2 and subsequent hydrogenation allows for base/methanol-promoted homogeneous hydrogenation of CO2 to methyl formate. The CO2, captured as an amidinium methyl carbonate, reacts with H2 with no applied pressure of CO2 in the presence of a catalyst to produce sequentially amidinium formate, then methyl formate. The production of methyl formate releases the base back into the system, thereby reducing one of the flaws of catalytic hydrogenations of CO2: the notable consumption of one mole of base per mole of formate produced. The reaction proceeds under 20 atm of H2 with selectivity to formate favored by the presence of excess base and lower temperatures (110 °C), while excess alcohol and higher temperatures (140 °C) favor methyl formate. Known CO2 hydrogenation catalysts are active in the ionic liquid medium with turnover numbers as high as 5000. It is unclear as to whether the alkyl carbonate or CO2 is hydrogenated, as we show they are in equilibrium in this system. The availability of both CO2 and the alkyl carbonate as reactive species may result in new catalyst designs and free energy pathways for CO2 that may entail different selectivity or kinetic activity.

15.
Acc Chem Res ; 47(8): 2621-30, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-24945095

RESUMEN

Redox active metalloenzymes play a major role in energy transformation reactions in biological systems. Examples include formate dehydrogenases, nitrogenases, CO dehydrogenase, and hydrogenases. Many of these reactions are also of interest to humans as potential energy storage or utilization reactions for photoelectrochemical, electrolytic, and fuel cell applications. These metalloenzymes consist of redox active metal centers where substrates are activated and undergo transformation to products accompanied by electron and proton transfer to or from the substrate. These active sites are typically buried deep within a protein matrix of the enzyme with channels for proton transport, electron transport, and substrate/product transport between the active site and the surface of the protein. In addition, there are amino acid residues that lie in close proximity to the active site that are thought to play important roles in regulating and enhancing enzyme activity. Directly studying the outer coordination sphere of enzymes can be challenging due to their complexity, and the use of modified molecular catalysts may allow us to provide some insight. There are two fundamentally different approaches to understand these important interactions. The "bottom-up" approach involves building an amino acid or peptide containing outer coordination sphere around a functional molecular catalyst, and the "top-down" approach involves attaching molecular catalyst to a structured protein. Both of these approaches have been undertaken for hydrogenase mimics and are the emphasis of this Account. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional enzyme mimic for H2 oxidation and production, [Ni(P(R)2N(R('))2)2](2+). This "bottom-up" approach has allowed us to evaluate individual functional group and structural contributions to electrocatalysts for H2 oxidation and production. For instance, using amine, ether, and carboxylic acid functionalities in the outer coordination sphere enhances proton movement and results in lower catalytic overpotentials for H2 oxidation, while achieving water solubility in some cases. Amino acids with acidic and basic side chains concentrate substrate around catalysts for H2 production, resulting in up to 5-fold enhancements in rate. The addition of a structured peptide in an H2 production catalyst limited the structural freedom of the amino acids nearest the active site, while enhancing the overall rate. Enhanced stability to oxygen or extreme conditions such as strongly acidic or basic conditions has also resulted from an amino acid based outer coordination sphere. From the "top-down" approach, others have achieved water solubility and photocatalytic activity by associating this core complex with photosystem-I. Collectively, by use of this well understood core, the role of individual and combined features of the outer coordination sphere are starting to be understood at a mechanistic level. Common mechanisms have yet to be defined to predictably control these processes, but our growing knowledge in this area is essential for the eventual mimicry of enzymes by efficient molecular catalysts for practical use.


Asunto(s)
Complejos de Coordinación/química , Hidrógeno/química , Aminoácidos/química , Materiales Biocompatibles/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Conformación Molecular , Níquel/química , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Protones
16.
Biochim Biophys Acta ; 1837(1): 131-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23981729

RESUMEN

Possible proton transport pathways in Clostridium pasteurianum (CpI) [FeFe]-hydrogenase were investigated with molecular dynamics simulations. This study was undertaken to evaluate the functional pathway and provide insight into the hydrogen bonding features defining an active proton transport pathway. Three pathways were evaluated, two of which consist of water wires and one of predominantly amino acid residues. Our simulations suggest that protons are not transported through water wires. Instead, the five-residue motif (Glu282, Ser319, Glu279, H2O, Cys299) was found to be the likely pathway, consistent with previously made experimental observations. The pathway was found to have a persistent hydrogen bonded core (residues Cys299 to Ser319), with less persistent hydrogen bonds at the ends of the pathway for both H2 release and H2 uptake. Single site mutations of the four residues have been shown experimentally to deactivate the enzyme. The theoretical evaluation of these mutations demonstrates redistribution of the hydrogen bonds in the pathway, resulting in enzyme deactivation. Finally, coupling between the protein dynamics near the proton transport pathway and the redox partner binding regions was also found as a function of H2 uptake and H2 release states, which may be indicative of a correlation between proton and electron movement within the enzyme.


Asunto(s)
Hidrogenasas/química , Simulación de Dinámica Molecular , Protones , Agua/química , Secuencias de Aminoácidos , Clostridium/enzimología , Clostridium/metabolismo , Hidrógeno/química , Hidrógeno/metabolismo , Enlace de Hidrógeno , Hidrogenasas/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Oxidación-Reducción , Estructura Terciaria de Proteína
17.
J Am Chem Soc ; 135(31): 11533-6, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23869651

RESUMEN

Because of the continually rising levels of CO2 in the atmosphere, research for the conversion of CO2 into fuels using carbon-neutral energy is an important and current topic in catalysis. Recent research on molecular catalysts has led to improved rates for conversion of CO2 to formate, but the catalysts are based on precious metals such as iridium, ruthenium and rhodium and require high temperatures and high pressures. Using established thermodynamic properties of hydricity (ΔGH(-)) and acidity (pKa), we designed a cobalt-based catalyst system for the production of formate from CO2 and H2. The complex Co(dmpe)2H (dmpe is 1,2-bis(dimethylphosphino)ethane) catalyzes the hydrogenation of CO2, with a turnover frequency of 3400 h(-1) at room temperature and 1 atm of 1:1 CO2:H2 (74,000 h(-1) at 20 atm) in tetrahydrofuran. These results highlight the value of fundamental thermodynamic properties in the rational design of catalysts.

18.
J Am Chem Soc ; 133(46): 18889-902, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22035197

RESUMEN

Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl(2)](2) (Cp* = [η(5)-C(5)(CH(3))(5)]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based "homogeneous" from polymetallic, "heterogeneous" catalysis. The reason, this study will show, is the previous failure to use the proper combination of: (i) in operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, and then crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a "wholly kinetic phenomenon" as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in the present case subnanometer Rh(4) cluster-based catalysis, from larger, polymetallic Rh(0)(n) nanoparticle catalysis, at least under favorable conditions. The combined in operando X-ray absorption fine structure (XAFS) spectroscopy and kinetic evidence provide a compelling case for Rh(4)-based, with average stoichiometry "Rh(4)Cp*(2.4)Cl(4)H(c)", benzene hydrogenation catalysis in 2-propanol with added Et(3)N and at 100 °C and 50 atm initial H(2) pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)(n) had formed nanoparticles, then those Rh(0)(n) nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)(n) nanoparticles as a model system). The results--especially the poisoning methodology developed and employed--are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic reactions. The results are also of fundamental interest in that they add to a growing body of evidence indicating that certain, appropriately ligated, coordinatively unsaturated, subnanometer M(4) transition-metal clusters can be relatively robust catalysts. Also demonstrated herein is that Rh(4) clusters are poisoned by Hg(0), demonstrating for the first time that the classic Hg(0) poisoning test of "homogeneous" vs "heterogeneous" catalysts cannot distinguish Rh(4)-based subnanometer catalysts from Rh(0)(n) nanoparticle catalysts, at least for the present examples of these two specific, Rh-based catalysts.

19.
J Am Chem Soc ; 133(32): 12767-79, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21692477

RESUMEN

[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.

20.
Inorg Chem ; 50(9): 4073-85, 2011 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-21456543

RESUMEN

Four new cyclic 1,5-diaza-3,7-diphosphacyclooctane ligands have been prepared and used to synthesize [Ni(P(Ph)(2)N(R)(2))(2)](2+) complexes in which R is a mono- or dipeptide. These complexes represent a first step in the development of an outer-coordination sphere for this class of complexes that can mimic the outer-coordination sphere of the active sites of hydrogenase enzymes. Importantly, these complexes retain the electrocatalytic activity of the parent [Ni(P(Ph)(2)N(Ph)(2))(2)](2+) complex in an acetonitrile solution with turnover frequencies for hydrogen production ranging from 14 to 25 s(-1) in the presence of p-cyanoanilinium trifluoromethanesulfonate and from 135 to 1000 s(-1) in the presence of protonated dimethylformamide, with moderately low overpotentials, ∼0.3 V. The addition of small amounts of water results in rate increases of 2-7 times. Unlike the parent complex, these complexes demonstrate dynamic structural transformations in solution. These results establish a building block from which larger peptide scaffolding can be added to allow the [Ni(P(R)(2)N(R')(2))(2)](2+) molecular catalytic core to begin to mimic the multifunctional outer-coordination sphere of enzymes.


Asunto(s)
Materiales Biomiméticos/química , Hidrógeno/química , Péptidos/química , Aminoácidos/química , Materiales Biomiméticos/síntesis química , Catálisis , Dipéptidos/química , Electroquímica , Hidrogenasas/química , Hidrogenasas/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Nitrógeno/química , Análisis Espectral , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...