Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 355(6331): 1312-1317, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28336669

RESUMEN

DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD+ (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD+ to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD+ concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD+ Thus, NAD+ directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/metabolismo , Reparación del ADN , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Envejecimiento/genética , Animales , Secuencia Conservada , Daño del ADN/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Paraquat/farmacología , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Dominios y Motivos de Interacción de Proteínas , ARN Interferente Pequeño/genética , Tolerancia a Radiación/genética , Homología de Secuencia de Ácido Nucleico
2.
Proc Natl Acad Sci U S A ; 111(10): 3781-6, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24556985

RESUMEN

Mitochondrial defects underlie a multitude of human diseases. Genetic manipulation of mitochondrial regulatory pathways represents a potential therapeutic approach. We have carried out a high-throughput overexpression screen for genes that affect mitochondrial abundance or activity using flow-cytometry-based enrichment of a cell population expressing a high-complexity, concentration-normalized pool of human ORFs. The screen identified 94 candidate mitochondrial regulators including the nuclear protein GLTSCR2, also known as PICT1. GLTSCR2 enhances mitochondrial function and is required for the maintenance of oxygen consumption, consistent with a pivotal role in the control of cellular respiration. RNAi inactivation of the Caenorhabditis elegans ortholog of GLTSCR2 reduces respiration in worms, indicating functional conservation across species. GLTSCR2 controls cellular proliferation and metabolism via the transcription factor Myc, and is induced by mitochondrial stress, suggesting it may constitute a significant component of the mitochondrial signaling pathway.


Asunto(s)
Mitocondrias/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico , Proteínas Supresoras de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Caenorhabditis elegans , Células Cultivadas , Cartilla de ADN/genética , Bases de Datos Genéticas , Citometría de Flujo , Humanos , Inmunoprecipitación , Análisis por Micromatrices , Mitocondrias/metabolismo , Sistemas de Lectura Abierta/genética , Consumo de Oxígeno/fisiología , Interferencia de ARN , Estrés Fisiológico/fisiología
3.
Cell ; 155(7): 1624-38, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360282

RESUMEN

Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/ß-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/ß-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible.


Asunto(s)
Envejecimiento/patología , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo
4.
Science ; 339(6124): 1216-9, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23471411

RESUMEN

A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.


Asunto(s)
Sirtuina 1/química , Sirtuina 1/metabolismo , Estilbenos/farmacología , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células Cultivadas , Activación Enzimática , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Ácido Glutámico/química , Ácido Glutámico/genética , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Datos de Secuencia Molecular , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Estructura Terciaria de Proteína , Resveratrol , Sirtuina 1/genética , Estilbenos/química , Especificidad por Sustrato
5.
Cell Metab ; 15(5): 675-90, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560220

RESUMEN

Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mice treated with a moderate dose of resveratrol showed increased mitochondrial biogenesis and function, AMPK activation, and increased NAD(+) levels in skeletal muscle, whereas SIRT1 knockouts displayed none of these benefits. A mouse overexpressing SIRT1 mimicked these effects. A high dose of resveratrol activated AMPK in a SIRT1-independent manner, demonstrating that resveratrol dosage is a critical factor. Importantly, at both doses of resveratrol no improvements in mitochondrial function were observed in animals lacking SIRT1. Together these data indicate that SIRT1 plays an essential role in the ability of moderate doses of resveratrol to stimulate AMPK and improve mitochondrial function both in vitro and in vivo.


Asunto(s)
Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas/metabolismo , Sirtuina 1/metabolismo , Estilbenos/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Activación Enzimática , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/genética , Músculo Esquelético/enzimología , NAD/metabolismo , Proteínas Quinasas/genética , Resveratrol , Transducción de Señal/efectos de los fármacos , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...