Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(19): e2307679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372431

RESUMEN

Triggering lysosome-regulated immunogenic cell death (ICD, e.g., pyroptosis and necroptosis) with nanomedicines is an emerging approach for turning an "immune-cold" tumor "hot"-a key challenge faced by cancer immunotherapies. Proton sponge such as high-molecular-weight branched polyethylenimine (PEI) is excellent at rupturing lysosomes, but its therapeutic application is hindered by uncontrollable toxicity due to fixed charge density and poor understanding of resulted cell death mechanism. Here, a series of proton sponge nano-assemblies (PSNAs) with self-assembly controllable surface charge density and cell cytotoxicity are created. Such PSNAs are constructed via low-molecular-weight branched PEI covalently bound to self-assembling peptides carrying tetraphenylethene pyridinium (PyTPE, an aggregation-induced emission-based luminogen). Assembly of PEI assisted by the self-assembling peptide-PyTPE leads to enhanced surface positive charges and cell cytotoxicity of PSNA. The self-assembly tendency of PSNAs is further optimized by tuning hydrophilic and hydrophobic components within the peptide, thus resulting in the PSNA with the highest fluorescence, positive surface charge density, cell uptake, and cancer cell cytotoxicity. Systematic cell death mechanistic studies reveal that the lysosome rupturing-regulated pyroptosis and necroptosis are at least two causes of cell death. Tumor cells undergoing PSNA-triggered ICD activate immune cells, suggesting the great potential of PSNAs to trigger anticancer immunity.


Asunto(s)
Muerte Celular Inmunogénica , Lisosomas , Péptidos , Polietileneimina , Protones , Lisosomas/metabolismo , Humanos , Péptidos/química , Muerte Celular Inmunogénica/efectos de los fármacos , Polietileneimina/química , Línea Celular Tumoral , Neoplasias/patología , Nanopartículas/química , Nanoestructuras/química , Supervivencia Celular/efectos de los fármacos
2.
Chem Commun (Camb) ; 59(83): 12459-12462, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37782049

RESUMEN

We report here a colorimetric method for rapid detection of norovirus based on the valence-driven peptide-AuNP interactions. We engineered a peptide sequence named K1 with a cleavage sequence in between two lysine residues. The positively charged lysine groups aggregated the negatively charged nanoparticles leading to a purple color change. There was a red color when the cleavage sequence was digested by the Southampton norovirus 3C-like protease (SV3CP)-a protease involved in the life cycle of Human norovirus (HNV). The limit of detection was determined to be 320 nM in Tris buffer. We further show that the sensor has good performance in exhaled breath condensate, urine, and faecal matter. This research provides a potential easy and quick way to selectively detect HNV.


Asunto(s)
Nanopartículas del Metal , Norovirus , Humanos , Péptido Hidrolasas , Colorimetría/métodos , Norovirus/química , Lisina , Péptidos , Nanopartículas del Metal/química , Oro/química
4.
PLoS One ; 18(10): e0293468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903113

RESUMEN

This study aims to restore grating lobe artifacts and improve the image resolution of sparse array ultrasonography via a deep learning predictive model. A deep learning assisted sparse array was developed using only 64 or 16 channels out of the 128 channels in which the pitch is two or eight times the original array. The deep learning assisted sparse array imaging system was demonstrated on ex vivo porcine teeth. 64- and 16-channel sparse array images were used as the input and corresponding 128-channel dense array images were used as the ground truth. The structural similarity index measure, mean squared error, and peak signal-to-noise ratio of predicted images improved significantly (p < 0.0001). The resolution of predicted images presented close values to ground truth images (0.18 mm and 0.15 mm versus 0.15 mm). The gingival thickness measurement showed a high level of agreement between the predicted sparse array images and the ground truth images, as indicated with a bias of -0.01 mm and 0.02 mm for the 64- and 16-channel predicted images, respectively, and a Pearson's r = 0.99 (p < 0.0001) for both. The gingival thickness bias measured by deep learning assisted sparse array imaging and clinical probing needle was found to be <0.05 mm. Additionally, the deep learning model showed capability of generalization. To conclude, the deep learning assisted sparse array can reconstruct high-resolution ultrasound image using only 16 channels of 128 channels. The deep learning model performed generalization capability for the 64-channel array, while the 16-channel array generalization would require further optimization.


Asunto(s)
Aprendizaje Profundo , Animales , Porcinos , Ultrasonografía , Artefactos , Generalización Psicológica , Encía , Procesamiento de Imagen Asistido por Computador
5.
ACS Appl Mater Interfaces ; 15(36): 42293-42303, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651748

RESUMEN

Colorimetric biosensors based on gold nanoparticle (AuNP) aggregation are often challenged by matrix interference in biofluids, poor specificity, and limited utility with clinical samples. Here, we propose a peptide-driven nanoscale disassembly approach, where AuNP aggregates induced by electrostatic attractions are dissociated in response to proteolytic cleavage. Initially, citrate-coated AuNPs were assembled via a short cationic peptide (RRK) and characterized by experiments and simulations. The dissociation peptides were then used to reversibly dissociate the AuNP aggregates as a function of target protease detection, i.e., main protease (Mpro), a biomarker for severe acute respiratory syndrome coronavirus 2. The dissociation propensity depends on peptide length, hydrophilicity, charge, and ligand architecture. Finally, our dissociation strategy provides a rapid and distinct optical signal through Mpro cleavage with a detection limit of 12.3 nM in saliva. Our dissociation peptide effectively dissociates plasmonic assemblies in diverse matrices including 100% human saliva, urine, plasma, and seawater, as well as other types of plasmonic nanoparticles such as silver. Our peptide-enabled dissociation platform provides a simple, matrix-insensitive, and versatile method for protease sensing.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Oro , Péptidos , Péptido Hidrolasas
6.
ACS Nano ; 17(17): 16980-16992, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579082

RESUMEN

Better insights into the fate of membraneless organelles could strengthen the understanding of the transition from prebiotic components to multicellular organisms. Compartmentalized enzyme reactions in a synthetic coacervate have been investigated, yet there remains a gap in understanding the enzyme interactions with coacervate as a substrate hub. Here, we study how the molecularly crowded nature of the coacervate affects the interactions of the embedded substrate with a protease. We design oligopeptide-based coacervates that comprise an anionic Asp-peptide (D10) and a cationic Arg-peptide (R5R5) with a proteolytic cleavage site. The coacervates dissolve in the presence of the main protease (Mpro) implicated in the coronavirus lifecycle. We capitalize on the condensed structure, introduce a self-quenching mechanism, and model the enzyme kinetics by using Cy5.5-labeled peptides. The determined specificity constant (kcat/KM) is 5817 M-1 s-1 and is similar to that of the free substrate. We further show that the enzyme kinetics depend on the type and quantity of dye incorporated into the coacervates. Our work presents a simple design for enzyme-responsive coacervates and provides insights into the interactions between the enzyme and coacervates as a whole.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Oligopéptidos , Péptido Hidrolasas
7.
Analyst ; 148(18): 4504-4512, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578304

RESUMEN

Noroviruses are highly contagious and are one of the leading causes of acute gastroenteritis worldwide. Due to a lack of effective antiviral therapies, there is a need to diagnose and surveil norovirus infections to implement quarantine protocols and prevent large outbreaks. Currently, the gold standard of diagnosis uses reverse transcription polymerase chain reaction (RT-PCR), but PCR can have limited availability. Here, we propose a combination of a tunable peptide substrate and gold nanoparticles (AuNPs) to colorimetrically detect the Southampton norovirus 3C-like protease (SV3CP), a key protease in viral replication. Careful design of the substrate employs a zwitterionic peptide with opposite charged moieties on the C- and N- termini to induce a rapid color change visible to the naked eye; thus, this color change is indicative of SV3CP activity. This work expands on existing zwitterionic peptide strategies for protease detection by systematically evaluating the effects of lysine and arginine on nanoparticle charge screening. We also determine a limit of detection for SV3CP of 28.0 nM with comparable results in external breath condensate, urine, and fecal matter for 100 nM of SV3CP. The key advantage of this system is its simplicity and accessibility, thus making it an attractive tool for qualitative point-of-care diagnostics.


Asunto(s)
Infecciones por Caliciviridae , Nanopartículas del Metal , Norovirus , Humanos , Péptido Hidrolasas , Norovirus/genética , Oro , Colorimetría , Péptidos , Endopeptidasas , Heces , Infecciones por Caliciviridae/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Angew Chem Int Ed Engl ; 62(4): e202214394, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36409652

RESUMEN

Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co-assembly experiments with plasmonic gold and surfactant-like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD-(ZZ)x -FFPC self-assemble into higher-order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro , a biomarker for SARS-CoV-2. This system is a simple and visual tool that senses Mpro in phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Péptidos/química , Péptido Hidrolasas , Tensoactivos , Endopeptidasas , Oro/química
9.
Nano Lett ; 22(22): 8932-8940, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346642

RESUMEN

Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Oro , Resonancia por Plasmón de Superficie/métodos , Ligandos , SARS-CoV-2 , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...