Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 41(1): 79, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227287

RESUMEN

BACKGROUND: Dysfunctional p53 signaling is one of the major causes of hepatocellular carcinoma (HCC) tumorigenesis and development, but the mechanisms underlying p53 inactivation in HCC have not been fully clarified. The role of Krüppel-associated box (KRAB)-type zinc-finger protein ZNF498 in tumorigenesis and the underlying mechanisms are poorly understood. METHODS: Clinical HCC samples were used to assess the association of ZNF498 expression with clinicopathological characteristics and patient outcomes. A mouse model in which HCC was induced by diethylnitrosamine (DEN) was used to explore the role of ZNF498 in HCC initiation and progression. ZNF498 overexpression and knockdown HCC cell lines were employed to examine the effects of ZNF498 on cellular proliferation, apoptosis, ferroptosis and tumor growth. Western blotting, immunoprecipitation, qPCR, luciferase assays and flow cytometry were also conducted to determine the underlying mechanisms related to ZNF498 function. RESULTS: ZNF498 was found to be highly expressed in HCC, and increased ZNF498 expression was positively correlated with advanced pathological grade and poor survival in HCC patients. Furthermore, ZNF498 promoted DEN-induced hepatocarcinogenesis and progression in mice. Mechanistically, ZNF498 directly interacted with p53 and suppressed p53 transcriptional activation by inhibiting p53 Ser46 phosphorylation. ZNF498 competed with p53INP1 for p53 binding and suppressed PKCδ- and p53INP1-mediated p53 Ser46 phosphorylation. In addition, functional assays revealed that ZNF498 promoted liver cancer cell growth in vivo and in vitro in a p53-dependent manner. Moreover, ZNF498 inhibited p53-mediated apoptosis and ferroptosis by attenuating p53 Ser46 phosphorylation. CONCLUSIONS: Our results strongly suggest that ZNF498 suppresses apoptosis and ferroptosis by attenuating p53 Ser46 phosphorylation in hepatocellular carcinogenesis, revealing a novel ZNF498-PKCδ-p53INP1-p53 axis in HCC cells that would enrich the non-mutation p53-inactivating mechanisms in HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Proteína p53 Supresora de Tumor , Dedos de Zinc , Animales , Apoptosis , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Fosforilación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-30012466

RESUMEN

KRAB-containing zinc finger proteins (KZNF) constitute the largest family of transcriptional regulators in humans and play critical roles in normal development and tumorigenesis. However, the function and mechanism of most KZNFs remain unclear. Here, we report that ZNF496, a KZNF family member, interacts with the DNA binding domain (DBD) of estrogen receptor alpha (ERα) via its C2H2 domain. This interaction decreases ERα binding to chromatin DNA and results in the repression of ERα transactivation, the selective suppression of ERα target genes, and ultimately in a reduction of ERα-positive cell growth in the presence of E2. An analysis of clinical data revealed that the downregulation of ZNF496 expression is observed only in ERα-positive and not in ERα-negative breast cancer tissues when compared with that in matched adjacent tissues. Lastly, we also observed that the downregulation of ZNF496 is associated with poor recurrence-free survival among patients with breast cancer. Collectively, our findings demonstrate that ZNF496 is a novel ERα-binding protein that acts as a target gene-specific ERα corepressor and inhibits the growth of ERα-positive breast cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...