Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Small ; : e2401345, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767495

RESUMEN

Novel binder designs are shown to be fruitful in improving the electrochemical performance of silicon (Si)-based anodes. However, issues with mechanical damage from dramatic volume change and poor lithium-ion (Li+) diffusion kinetics in Si-based materials still need to be addressed. Herein, an aqueous self-repairing borate-type binder (SBG) with a web-like architecture and high ionic conductivity is designed for Si and SiO electrodes. The 3D web-like architecture of the SBG binder enables uniform stress distribution, while its self-repairing ability promotes effective stress dissipation and mechanical damage repair, thereby enhancing the damage tolerance of the electrode. The tetracoordinate boron ions ( - BO 4 - $ - {\mathrm{BO}}_4^ - $ ) in the SBG binder boosts the Li transportation kinetics of Si-based electrodes. Based on dynamic covalent and ionic conductive boronic ester bonds, the diverse requirements of the binder, including uniform stress distribution, self-repairing ability, and high ionic conductivity, can be met by simple components. Consequently, the proposed straightforward multifunction design strategy for binders based on dynamic boron chemistry provides valuable insights into fabricating high-performance Si-based anodes.

2.
Int J Biol Macromol ; 269(Pt 2): 132200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723834

RESUMEN

Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.


Asunto(s)
Antivirales , Virosis , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Virosis/tratamiento farmacológico , Virosis/virología , Virus/efectos de los fármacos , Animales , Interacciones Huésped-Patógeno
3.
ACS Appl Mater Interfaces ; 16(19): 24525-24533, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698684

RESUMEN

Due to the complex series of elementary steps involved, achieving deep photoreduction of CO2 to multielectron products such as CH4 remains a challenging task. Therefore, it is crucial to strategically design catalysts that facilitate the controlled formation of the crucial intermediates and provide precise control over the reaction pathway. Herein, we present a pioneering approach by employing polyhydroxy fullerene (PHF) molecules to modify the surface of Ni(OH)2, creating stable and effective synergistic sites to enhance the formation of CH4 from CO2 under light irradiation. As a result, the optimized PHF-modified Ni(OH)2 cocatalyst achieves a CH4 production rate of 455 µmol g-1 h-1, with an electron-based selectivity of approximately 60%. The combination of in situ characterizations and theoretical calculations reveals that the hydroxyl species on the surface of PHF can participate in stabilizing crucial intermediates and facilitating water activation, thereby altering the reaction pathway to form CH4 instead of CO. This study provides a novel approach to regulating the selectivity of photocatalytic CO2 reduction by exploring molecular surface modification through interfacing with functionalized carbon clusters.

4.
JACS Au ; 4(5): 1986-1996, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818081

RESUMEN

Developing advanced electrolytes has been regarded as a pivotal strategy for enhancing the electrochemical performance of batteries; however, the criteria for electrolyte design remain elusive. In this study, we present an electrolyte design chart reframed through intermolecular interactions. By combining systematic nuclear magnetic resonance, Fourier transform infrared measurements, molecular dynamics (MD) simulations, and machine-learning-assisted classifications, we establish semiquantitative correlations between electrolyte components and the electrochemical reversibility of electrolytes. We propose the equivalent increment of Li salt resulting from functional cosolvent and solvent-solvent interactions for effective electrolyte design and prediction. The controllable regulation of the electrolyte design chart by the properties of solvent-solvent interactions presents varying equivalent effects of increasing Li salt concentrations in different electrolyte systems. Based on this mechanism, we demonstrate highly reversible and nonflammable phosphate-based electrolytes for graphite||NCM811 full cells. The proposed electrolyte design chart, semiquantitatively determined by intermolecular interactions, provides the necessary experimental foundation and basis for the future rapid screening and prediction of electrolytes using machine-learning methods.

5.
Neuropsychiatr Dis Treat ; 20: 885-896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645710

RESUMEN

Background: The global incidence of acute events in psychiatric patients is intensifying, and models to successfully predict acute events have attracted much attention. Objective: To explore the influence factors of acute incident severe mental disorders (SMDs) and the application of Rstudio statistical software, and build and verify a nomogram prediction model. Methods: SMDs were taken as research objects. The questionnaire survey method was adopted to collect data. Patients with acute event independent factors were screened. R software multivariable Logistic regression model was constructed and a nomogram was drawn. Results: A total of 342 patients with SMDs were hospitalized, and the number of patients who encountered acute events was 64, which accounted for 18.70% of all patients. Statistical significances were found in many aspects (all P ˂ 0.05). Such aspects included Medication adherence, disease diagnosis, marital status, caregivers, social support and the hospitalization environment (odds ratio (OR) = 4.08, 11.62, 12.06, 10.52, 0.04 and 0.61, respectively) were independent risk factors for the acute events of patients with SMDs. The prediction model was modeled, and the AUC was 0.77 and 0.80. The calibration curve shows that the model has good calibration. The clinical decision curve shows that the model has a good clinical effect. Conclusion: The constructed risk prediction model shows good prediction effectiveness in the acute events of patients with SMDs, which is helpful for the early detection of clinical mental health staff at high risk of acute events.

6.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661066

RESUMEN

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Asunto(s)
Antivirales , Antígenos CD13 , Ionóforos , Ganado , Animales , Antivirales/farmacología , Antivirales/química , Ionóforos/farmacología , Ionóforos/química , Antígenos CD13/metabolismo , Antígenos CD13/química , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Drogas Veterinarias/farmacología , Drogas Veterinarias/química , Coronavirus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Policétidos Poliéteres
7.
Arch Pharm Res ; 47(4): 301-324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592582

RESUMEN

Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.


Asunto(s)
Sarcopenia , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/terapia , Humanos , Animales , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miostatina/antagonistas & inhibidores , Miostatina/metabolismo , Desarrollo de Medicamentos/métodos
8.
Microb Pathog ; 191: 106649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636568

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.


Asunto(s)
Bacterias , Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovirus , ARN Ribosómico 16S , Animales , Bombyx/virología , Bombyx/microbiología , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/genética , Microbioma Gastrointestinal/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Resistencia a la Enfermedad , ADN Ribosómico/genética , ADN Bacteriano/genética
9.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612874

RESUMEN

The Hippo pathway plays crucial roles in governing various biological processes during tumorigenesis and metastasis. Within this pathway, upstream signaling stimuli activate a core kinase cascade, involving MST1/2 and LATS1/2, that subsequently phosphorylates and inhibits the transcriptional co-activators YAP and its paralog TAZ. This inhibition modulates the transcriptional regulation of downstream target genes, impacting cell proliferation, migration, and death. Despite the acknowledged significance of protein kinases in the Hippo pathway, the regulatory influence of protein phosphatases remains largely unexplored. In this study, we conducted the first gain-of-functional screen for protein tyrosine phosphatases (PTPs) regulating the Hippo pathway. Utilizing a LATS kinase biosensor (LATS-BS), a YAP/TAZ activity reporter (STBS-Luc), and a comprehensive PTP library, we identified numerous novel PTPs that play regulatory roles in the Hippo pathway. Subsequent experiments validated PTPN12, a master regulator of oncogenic receptor tyrosine kinases (RTKs), as a previously unrecognized negative regulator of the Hippo pathway effectors, oncogenic YAP/TAZ, influencing breast cancer cell proliferation and migration. In summary, our findings offer valuable insights into the roles of PTPs in the Hippo signaling pathway, significantly contributing to our understanding of breast cancer biology and potential therapeutic strategies.


Asunto(s)
Neoplasias , Monoéster Fosfórico Hidrolasas , Vía de Señalización Hippo , Genes Reguladores , Transducción de Señal , Factores de Transcripción
10.
J Med Virol ; 96(3): e29512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483056

RESUMEN

Coronaviruses (CoVs) have continuously posed a threat to human and animal health. However, existing antiviral drugs are still insufficient in overcoming the challenges caused by multiple strains of CoVs. And methods for developing multi-target drugs are limited in terms of exploring drug targets with similar functions or structures. In this study, four rounds of structural design and modification on salinomycin were performed for novel antiviral compounds. It was based on the strategy of similar topological structure binding properties of protein targets (STSBPT), resulting in the high-efficient synthesis of the optimal compound M1, which could bind to aminopeptidase N and 3C-like protease from hosts and viruses, respectively, and exhibit a broad-spectrum antiviral effect against severe acute respiratory syndrome CoV 2 pseudovirus, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, feline infectious peritonitis virus and mouse hepatitis virus. Furthermore, the drug-binding domains of these proteins were found to be structurally similar based on the STSBPT strategy. The compounds screened and designed based on this region were expected to have broad-spectrum and strong antiviral activities. The STSBPT strategy is expected to be a fundamental tool in accelerating the discovery of multiple targets with similar effects and drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Gatos , Ratones , Porcinos , Humanos , Antivirales/química , Infecciones por Coronavirus/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
11.
Small Methods ; : e2301667, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403871

RESUMEN

Ultrahigh-capacity silicon (Si) anodes are essential for the escalating energy demands driven by the booming e-transportation and energy storage field. However, their practical applications are strictly hampered by their intrinsically low electroconductivity, sluggish Li-ion diffusion, and undesirably large volume change. Herein, a high-performance Si anode, comprised of a modulated soft/hard coating of polyethylene glycol (PEG) (as Li-ion conductor) and polyaniline (PANI) (as electron conductor) on the surface of Si nanoparticles (NPs) through H-bonding network, is introduced. In this design, the abundant ─OH groups of soft PEG allow it to uniformly cover Si NPs while the hard PANI binds to PEG through its ─N─H group, thus constructing a tight connectin between Si and PEG-PANI (PP). Consequently, the elastic PP allows Si@PP to accommodate the huge volume expansion while possessing fine electronic/ionic conductivity. Therefore, the Si@PP anode exhibits a high initial Coulombic efficiency of 90.5% and a stable capacity of 1871 mAh g-1 after 100 cycles at 1 A g-1 with a retention of 85.7%. Additionally, the Si@PP anode also demonstrates a high areal capacity of 3.01 mAh cm-2 after 100 cycles at 0.5 A g-1 . This work reveals a scalable interface design of multi-layer multifunctional coatings for high-performance electrode materials in next-generation Li-ion batteries.

12.
Cancer Lett ; 587: 216730, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360140

RESUMEN

Under the sustained exposure to tumor microenvironment, effector lymphocytes may transform into the suppressive populations. γδ T cells are recognized as a crucial mediator and effector of immune surveillance and thereby a promising candidate for anti-tumor immunotherapy. Emerging clinical studies implicate that some γδ T subsets play an important role in promoting tumor progression. Our previous study identified an abnormal Vδ2+ T cells subset with regulatory features (Reg-Vδ2) in the patients with newly diagnosed acute myeloid leukemia (AML), and demonstrated that Reg-Vδ2 cells significantly suppressed the anti-AML effects of effector Vδ2 cells (Eff-Vδ2). The molecular mechanism underlying the subset transformation of Vδ2 cells remains unclear. Here, we found that the expression and activity of STAT5 were significantly induced in Reg-Vδ2 cells compared with Eff-Vδ2 cells, which was consistent with the differences found in primary Vδ2 cells between AML patients and healthy donors. In-vitro experiments further indicated that STAT5 was required for the induction of Reg-Vδ2 cells. The combined immunophenotypical and functional assays showed that blockage of STAT5 alleviated the immunosuppressive effect of Reg-Vδ2 cells on Eff-Vδ2 cells and enhanced the anti-AML capacity of Vδ2 cells from health donors and AML patients. Collectively, these results suggest that STAT5 acts as a critical regulator in the transformation of effector Vδ2 cells into a subset with immunosuppressive characteristics, providing a potential target for the improvement the efficacy of γδ T cells-based immunotherapy to treat AML and other hematologic malignancies.


Asunto(s)
Leucemia Mieloide Aguda , Subgrupos de Linfocitos T , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Transcripción STAT5/metabolismo , Microambiente Tumoral
13.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38379414

RESUMEN

MOTIVATION: The process of analyzing high throughput sequencing data often requires the identification and extraction of specific target sequences. This could include tasks, such as identifying cellular barcodes and UMIs in single-cell data, and specific genetic variants for genotyping. However, existing tools, which perform these functions are often task-specific, such as only demultiplexing barcodes for a dedicated type of experiment, or are not tolerant to noise in the sequencing data. RESULTS: To overcome these limitations, we developed Flexiplex, a versatile and fast sequence searching and demultiplexing tool for omics data, which is based on the Levenshtein distance and thus allows imperfect matches. We demonstrate Flexiplex's application on three use cases, identifying cell-line-specific sequences in Illumina short-read single-cell data, and discovering and demultiplexing cellular barcodes from noisy long-read single-cell RNA-seq data. We show that Flexiplex achieves an excellent balance of accuracy and computational efficiency compared to leading task-specific tools. AVAILABILITY AND IMPLEMENTATION: Flexiplex is available at https://davidsongroup.github.io/flexiplex/.


Asunto(s)
Motor de Búsqueda , Programas Informáticos , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Procesamiento Automatizado de Datos
14.
Small Methods ; : e2301434, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38237086

RESUMEN

Designing a multifunctional electrocatalyst to produce H2 from water, urea, urine, and wastewater, is highly desirable yet challenging because it demands precise Fermi-engineering to realize stronger π-donation from O 2p to electron(e- )-deficient metal (t2g ) d-orbitals. Here a Sr-induced phase transformed ß-FeOOH/α-Ni(OH)2 catalyst anchored on Ni-foam (designated as pt-NFS) is introduced, where Sr produces plenteous Fe4+ (Fe3+ → Fe4+ ) to modulate Fermi level and e- -transfer from e- -rich Ni3+ (t2g )-orbitals to e- -deficient Fe4+ (t2g )-orbitals, via strong π-donation from the π-symmetry lone-pair of O bridge. pt-NFS utilizes Fe-sites near the Sr-atom to break the H─O─H bonds and weakens the adsorption of *O while strengthening that of *OOH, toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Invaluably, Fe-sites of pt-NFS activate H2 -production from urea oxidation reaction (UOR) through a one-stage pathway which, unlike conventional two-stage pathways with two NH3 -molecules, involves only one NH3 -molecule. Owing to more suitable kinetic energetics, pt-NFS requires 133 mV (negative potential shift), 193 mV, ≈1.352 V, and ≈1.375 V versus RHE for HER, OER, UOR, and human urine oxidation, respectively, to reach the benchmark 10 mA cm-2 and also demonstrates remarkable durability of over 25 h. This work opens a new corridor to design multifunctional electrocatalysts with precise Fermi engineering through d-band modulation.

15.
J Agric Food Chem ; 72(4): 2240-2249, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258624

RESUMEN

Muscle atrophy refers to a decline in muscle mass and function, which has become a global concern due to the aging population. Various clinical trials have investigated the inhibitors of myostatin (MSTN). They have shown promising improvements in muscle function and quality of life. However, there are no drugs specifically targeting MSTN that have been approved for clinical use. In this study, we virtually screened liensinine (LIE), a food (Nelumbo nucifera)-derived compound, with low toxicity, from over 1.1 million compounds. We subsequently identified it as a potential candidate that targets MSTN by a cellular thermal shift assay (CETSA) and drug affinity response target stability (DARTS) assay. Further validation through cellular and in vivo studies demonstrated its promising potential in combating muscle atrophy. The mechanism of action may involve hindering the interaction between MSTN and the activin receptor type IIB (ActRIIB) and downregulating the expression of downstream proteins, including the muscle RING-finger protein-1 (MuRF-1) and muscle atrophy F-box (MAFbx)/Atrogin-1, ultimately promoting muscle regeneration. These results provide a strong foundation for future studies to explore the therapeutic potential of LIE in clinical settings.


Asunto(s)
Isoquinolinas , Nelumbo , Fenoles , Humanos , Anciano , Miostatina/genética , Miostatina/metabolismo , Calidad de Vida , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Proteínas/metabolismo , Músculo Esquelético/metabolismo
16.
Mol Biotechnol ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231315

RESUMEN

The insect larvae Protaetia brevitarsis seulensis have recently been researched as a nutritious food source and concentrated on their environmental impacts. Therefore, their gut microbiota has been studied to elucidate their effects and roles on the environment. Of the abundance of bacterial genus identified based on the 16S rRNA genes from isolates of the gut of insect larva Protaetia brevitarsis seulensis, six of the prominent genus were identified as Bacillus (40.2%), Cellulosimicrobium (33.5%), Microbacterium (2.8%), Streptomyces (3%), Krasilnikoviella (17.5%), and Isoptericola (3%) and their similarity of 16S rRNA blast changed from 99 to 100%. Cellulosimicrobium protaetiae BI34T showed strong denitrification and cellulose degradation activity. The newly complete genome sequence of BI34T and the genomes of five species was published in the genus Cellulosimicrobium with emphasis on the denitrification and secondary metabolite genes. In order to elucidate the relationship between the strain BI34T and the host insect larva, the whole-genome sequence was analyzed and compared with the genomes of five strains in the same genus, Cellulosimicrobium, loaded from GenBank. Our results revealed the composition of the gut microbiota of the insect larvae and analyzed the genomic data for the new strain to predict its characteristics and to understand the nitrogen metabolism pathway.

17.
Cell Prolif ; 57(4): e13563, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37881164

RESUMEN

Human midbrain dopaminergic progenitors (mDAPs) are one of the most representative cell types in both basic research and clinical applications. However, there are still many challenges for the preparation and quality control of mDAPs, such as the lack of standards. Therefore, the establishment of critical quality attributes and technical specifications for mDAPs is largely needed. "Human midbrain dopaminergic progenitor" jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human mDAPs in China. This standard specifies the technical requirements, test methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for human mDAPs, which is applicable to the quality control for human mDAPs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will facilitate the institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human mDAPs for clinical development and therapeutic applications.


Asunto(s)
Neuronas Dopaminérgicas , Mesencéfalo , Humanos , China , Neuronas Dopaminérgicas/metabolismo
18.
Cell Prolif ; 57(4): e13564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37853840

RESUMEN

'Human neural stem cells' jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human neural stem cells (hNSCs) in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hNSCs, which is applicable to the quality control for hNSCs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that publication of the guideline will facilitate institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of hNSCs for clinical development and therapeutic applications.


Asunto(s)
Células-Madre Neurales , Trasplante de Células Madre , Humanos , Diferenciación Celular , China
19.
Adv Sci (Weinh) ; 11(5): e2304120, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030565

RESUMEN

Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.

20.
Small ; 20(23): e2308005, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148319

RESUMEN

The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g-1 h-1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible-light conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA