Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568986

RESUMEN

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Asunto(s)
Monoterpenos Ciclohexánicos , Cimenos , Melaleuca , Aceite de Árbol de Té , Limoneno , Cromatografía de Gases y Espectrometría de Masas/métodos , Árboles , Australia , Terpenos/química , , Melaleuca/química
2.
J Environ Manage ; 358: 120822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599088

RESUMEN

Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.


Asunto(s)
Agua Subterránea , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Aguas Residuales/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Eliminación de Residuos Líquidos/métodos , Calidad del Agua , Triazoles/análisis , Purificación del Agua/métodos , Gemfibrozilo/análisis
3.
J Chromatogr A ; 1685: 463562, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36323095

RESUMEN

A direct injection liquid chromatography-tandem mass spectrometry method was successfully developed for the analysis of 19 illicit drugs and psychopharmaceuticals in raw and treated wastewater. The method includes the analysis of stimulants and opioids, and antidepressant, antipsychotic, antianxiety, appetite suppressant and hallucinogen drugs. The method limits of quantification range from 5 - 59 ng L-1 and 2 - 38 ng L-1 in raw and treated wastewater, respectively. Analysis of raw and treated wastewater samples collected daily for a week from a wastewater treatment plant operating with oxidation ditch technology showed that codeine and tramadol were the drugs with the highest median mass concentrations in raw wastewater (1800 and 1000 ng L-1, respectively). The presence of some of the drugs in treated wastewater samples implies incomplete removal of illicit drugs and psychopharmaceuticals during wastewater treatment. This method offers an alternative to existing methods for faster screening of wastewater samples without the need for sample pre-concentration techniques, such as solid-phase extraction, with limits of detection in the low nanogram per litre range.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Aguas Residuales/química , Drogas Ilícitas/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Extracción en Fase Sólida/métodos , Psicotrópicos
4.
Environ Sci Process Impacts ; 22(3): 653-662, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32150177

RESUMEN

The use of monochloramine as an alternative disinfectant to chlorine in drinking water treatment can lead to increased formation of emerging nitrogenous halogenated disinfection by-products (DBPs), even when the formation of regulated halogenated DBPs has decreased. In this study, we investigated formation of the semivolatile haloacetonitriles (HANs) from model nitrogen-containing compounds (6 amines, 1 amide, 6 amino acids, and 2 nitrogen-containing aromatic chemicals) and natural organic matter (NOM) reference materials after chloramination. In agreement with previous studies, most amino acids formed dichloroacetonitrile (DCAN). Additionally, DCAN formed from two amines containing aromatic rings (N,N-dimethylaniline and 3-(dimethylamino-methyl)indole) and the two nitrogen-containing aromatic chemicals (cotinine and phenytoin). This is the first report of DCAN formation from these precursors. DCAN also formed after chloramination of NOM reference materials, with the highest formation from the NOM material with the highest aromaticity. The results provide new evidence of a DCAN formation pathway from cleavage of activated aromatic structures after electrophilic substitution of chlorine and addition of monochloramine to the ring system. In particular, the results suggest that the previously proposed aldehyde pathway from the amino acid group is not responsible for the majority of DCAN formation from amino acids with an activated aromatic ring system. This newly proposed formation pathway for DCAN from activated aromatic organic matter has significant implications for NOM removal during water treatment to minimise DBP formation. Studies using 15N-labelled monochloramine showed that there was significant incorporation of nitrogen from monochloramine into DCAN, demonstrating that monochloramine disinfection promotes the formation of HANs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Acetonitrilos , Cloro , Desinfección , Halogenación , Agua
5.
Water Res ; 158: 301-312, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31051375

RESUMEN

While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.


Asunto(s)
Cryptosporidium , Eucariontes , Animales , Heces , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Ribosómico 18S , Aguas Residuales , Australia Occidental
6.
Sci Total Environ ; 670: 1111-1124, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31018427

RESUMEN

Recycled wastewater can carry human-infectious microbial pathogens and therefore wastewater treatment strategies must effectively eliminate pathogens before recycled wastewater is used to supplement drinking and agricultural water supplies. This study characterised the bacterial composition of four wastewater treatment plants (WWTPs) (three waste stabilisation ponds and one oxidation ditch WWTP using activated sludge treatment) in Western Australia. The hypervariable region 4 (V4) of the bacterial 16S rRNA (16S) gene was sequenced using next-generation sequencing (NGS) on the Illumina MiSeq platform. Sequences were pre-processed in USEARCH v10.0 and denoised into zero-radius taxonomic units (ZOTUs) with UNOISE3. Taxonomy was assigned to the ZOTUs using QIIME 2 and the Greengenes database and cross-checked with the NCBI nr/nt database. Bacterial composition of all WWTPs and treatment stages (influent, intermediate and effluent) were dominated by Proteobacteria (29.0-87.4%), particularly Betaproteobacteria (9.0-53.5%) and Gammaproteobacteria (8.6-34.6%). Nitrifying bacteria (Nitrospira spp.) were found only in the intermediate and effluent of the oxidation ditch WWTP, and denitrifying and floc-forming bacteria were detected in all WWTPs, particularly from the families Comamonadaceae and Rhodocyclales. Twelve pathogens were assigned taxonomy by the Greengenes database, but comparison of sequences from genera and families known to contain pathogens to the NCBI nr/nt database showed that only three pathogens (Arcobacter venerupis, Laribacter hongkongensis and Neisseria canis) could be identified in the dataset at the V4 region. Importantly, Enterobacteriaceae genera could not be differentiated. Family level taxa assigned by Greengenes database agreed with NCBI nr/nt in most cases, however, BLAST analyses revealed erroneous taxa in Greengenes database. This study highlights the importance of validating taxonomy of NGS sequences with databases such as NCBI nr/nt, and recommends including the V3 region of 16S in future short amplicon NGS studies that aim to identify bacterial enteric pathogens, as this will improve taxonomic resolution of most, but not all, Enterobacteriaceae species.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/genética , Enterobacteriaceae/aislamiento & purificación , Análisis de Secuencia de ARN/métodos , Australia Occidental
7.
Water Res ; 146: 10-18, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30223107

RESUMEN

The formation of odorous aldehydes and N-chloraldimines, and also nitriles, which are potentially hazardous to human health, was investigated in studies of the chlorination of amino acids (AAs) in both operational drinking water treatment plants and laboratory-based experiments. In the drinking water treatment plants studied, the concentration of total free AAs did not significantly change after treatment, even though good removal of DOC was observed. However, free AAs still contributed less than 3% of total nitrogen in the treated drinking waters, and no aldehydes, N-chloraldimines or nitriles of interest were detected in the treated waters, presumably due to the low concentrations of the precursor AAs in these water samples. Laboratory formation potential experiments showed that carboxylic acids can form from the degradation of aldehydes and nitriles. Volatile carboxylic acids could result in odour issues and some carboxylic acids may be of potential health concern. Therefore, carboxylic acids should also be considered as potential by-products of interest in distribution systems with long contact times of ≥ 7days. A higher proportion of nitrile formation, and promotion of carboxylic acid formation, was observed when the chlorine to AA ratio was greater than 4 compared to when this ratio was 2.8, indicating that the Cl:AA ratio is an important factor in DBP formation pathways. This suggests that results from laboratory formation studies undertaken at these low Cl:AA ratios cannot be directly applied to 'real' water systems, which typically have Cl:AA ratios that are orders of magnitude higher than 4. Laboratory formation potential experiments also showed that the short-term rate of formation of aldehydes and N-chloraldimines was reduced in the presence of ammonia, although formation over longer timescales (e.g. 7 days) was not significantly different between chlorination and chloramination experiments. Therefore, the use of chloramination instead of chlorination does not appear to reduce the formation of these by-products from AAs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Aminoácidos , Cloraminas , Cloro , Desinfección , Halogenación , Odorantes
8.
J Environ Sci (China) ; 58: 102-115, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774599

RESUMEN

We studied the formation of four nitrogenous DBPs (N-DBPs) classes (haloacetonitriles, halonitromethanes, haloacetamides, and N-nitrosamines), as well as trihalomethanes and total organic halogen (TOX), after chlorination or chloramination of source waters. We also evaluated the relative and additive toxicity of N-DBPs and water treatment options for minimisation of N-DBPs. The formation of halonitromethanes, haloacetamides, and N-nitrosamines was higher after chloramination and positively correlated with dissolved organic nitrogen or total nitrogen. N-DBPs were major contributors to the toxicity of both chlorinated and chloraminated waters. The strong correlation between bromide concentration and the overall calculated DBP additive toxicity for both chlorinated and chloraminated source waters demonstrated that formation of brominated haloacetonitriles was the main contributor to toxicity. Ozone-biological activated carbon treatment was not effective in removing N-DBP precursors. The occurrence and formation of N-DBPs should be investigated on a case-by-case basis, especially where advanced water treatment processes are being considered to minimise their formation in drinking waters, and where chloramination is used for final disinfection.


Asunto(s)
Bromuros/análisis , Desinfectantes/análisis , Compuestos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Australia , Desinfección , Halogenación , Trihalometanos/análisis , Purificación del Agua
9.
J Environ Sci (China) ; 58: 2-18, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774610

RESUMEN

This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation.


Asunto(s)
Cloraminas/análisis , Desinfectantes/análisis , Purificación del Agua/métodos , Cloro , Desinfección/métodos , Agua Potable/química , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 51(9): 4870-4876, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28296395

RESUMEN

Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected byproducts. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modeling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4 × 104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9 × 102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0 × 10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3 × 10-4 s-1) and N-chloroisobutyraldimine (1.2 × 10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odor threshold concentration, resulting in aesthetic challenges and an unknown health risk.


Asunto(s)
Aminoácidos/química , Halogenación , Cloraminas/química , Cloro/química , Desinfección , Purificación del Agua
11.
Environ Monit Assess ; 188(9): 518, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27523603

RESUMEN

The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 µg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 µg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.


Asunto(s)
Acetonitrilos/análisis , Desinfectantes/química , Desinfección , Agua Potable/análisis , Nitrosaminas/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cloraminas/química , Cloro/química , Agua Potable/normas , Monitoreo del Ambiente/métodos , Trihalometanos/análisis , Abastecimiento de Agua , Australia Occidental
12.
Water Res ; 93: 65-73, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26896824

RESUMEN

Although organic chloramines are known to form during the disinfection of drinking water with chlorine, little information is currently available on their occurrence or toxicity. In a recent in vitro study, some organic chloramines (e.g. N-chloroglycine) were found to be cytotoxic and genotoxic even at micromolar concentrations. In this paper, the formation and stability of 21 different organic chloramines, from chlorination of simple amines and amino acids, were studied, and the competition between 20 amino acids during chlorination was also investigated. For comparison, chlorination of two amides was also conducted. The formation and degradation of selected organic chloramines were measured using either direct UV spectroscopic or colorimetric detection. Although cysteine, methionine and tryptophan were the most reactive amino acids towards chlorination, they did not form organic chloramines at the chlorine to precursor molar ratios that were tested. Only 6 out of the 21 organic chloramines formed had a half-life of more than 3 h, although this group included all organic chloramines formed from amines. A health risk assessment relating stability and reactivity data from this study to toxicity and precursor abundance data from the literature indicated that only N-chloroglycine is likely to be of concern due to its stability, toxicity and abundance in water. However, given the stability of organic chloramines formed from amines, more information about the toxicity and precursor abundance for these chloramines is desirable.


Asunto(s)
Aminoácidos/química , Cloraminas/química , Agua Potable/química , Contaminantes Químicos del Agua/química , Cloraminas/aislamiento & purificación , Cloro/química , Cisteína/química , Desinfección/métodos , Agua Potable/análisis , Glicina/análogos & derivados , Glicina/química , Glicina/aislamiento & purificación , Halogenación , Humanos , Metionina/química , Salud Pública/métodos , Medición de Riesgo/métodos , Espectrofotometría Ultravioleta , Triptófano/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
13.
Water Res ; 74: 143-54, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25725202

RESUMEN

Benzotriazoles (BTs) and benzothiazoles (BTHs) are extensively used chemicals found in a wide range of household and industrial products. They are chemically stable and are therefore ubiquitous in the aquatic environment. The present study focuses on the potential of ultraviolet (UV) irradiation, alone or in combination with hydrogen peroxide (H2O2), to remove BTs and BTHs from contaminated waters. Six compounds, three out of each chemical class, were investigated using a low-pressure mercury lamp (main emission at 254 nm) as the radiation source. Initially, the direct phototransformation kinetics and quantum yield in dilute aqueous solution was studied over the pH range of 4-12. All BTs and BTHs, except for benzothiazole, exhibited pH-dependent direct phototransformation rate constants and quantum yields in accordance to their acid-base speciation (7.1 < pKa < 8.9). The direct phototransformation quantum yields (9.0 × 10(-4)-3.0 × 10(-2) mol einstein(-1)), as well as the photon fluence-based rate constants (1.2-48 m(2) einstein(-1)) were quite low. This suggests that UV irradiation alone is not an efficient method to remove BTs and BTHs from impacted waters. The second-order rate constants for the reaction of selected BTs and BTHs with the hydroxyl radical were also determined, and found to fall in the range of 5.1-10.8 × 10(9) M(-1) s(-1), which is typical for aromatic contaminants. Finally, the removal of BTs and BTHs was measured in wastewater and river water during application of UV irradiation or the advanced oxidation process UV/H2O2. The latter process provided an efficient removal, mostly due to the effect of the hydroxyl radical, that was comparable to other aromatic aquatic contaminants, in terms of energy requirement or treatment costs.


Asunto(s)
Benzotiazoles/química , Peróxido de Hidrógeno/química , Triazoles/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Benzotiazoles/efectos de la radiación , Radical Hidroxilo/química , Cinética , Oxidación-Reducción , Fotólisis , Triazoles/efectos de la radiación
14.
J Chromatogr A ; 1370: 135-46, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25454138

RESUMEN

This paper reports a new analytical method for the analysis of 18 amino acids in natural waters using solid-phase extraction (SPE) followed by liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) operated in multiple reaction monitoring mode. Two different preconcentration methods, solid-phase extraction and concentration under reduced pressure, were tested in development of this method. Although concentration under reduced pressure provided better recoveries and method limits of detection for amino acids in ultrapure water, SPE was a more suitable extraction method for real samples due to the lower matrix effects for this method. Even though the strong cation exchange resin used in SPE method introduced exogenous matrix interferences into the sample extracts (inorganic salt originating from the acid-base reaction during the elution step), the SPE method still incorporates a broad sample clean-up and minimised endogenous matrix effects by reducing interferences originating from real water samples. The method limits of quantification (MLQ) for the SPE LC-MS/MS method in ultrapure water ranged from 0.1 to 100 µg L(-1) as N for the different amino acids. The MLQs of the early eluting amino acids were limited by the presence of matrix interfering species, such as inorganic salts in natural water samples. The SPE LC-MS/MS method was successfully applied to the analysis of amino acids in 3 different drinking water source waters: the average total free amino acid content in these waters was found to be 19 µg L(-1) as N, while among the 18 amino acids analysed, the most abundant amino acids were found to be tyrosine, leucine and isoleucine.


Asunto(s)
Aminoácidos/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Agua/química , Aminoácidos/química , Resinas de Intercambio de Catión/química , Concentración de Iones de Hidrógeno , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis
15.
J Chromatogr A ; 1299: 48-57, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23768537

RESUMEN

Two methods employing solid-phase extraction and liquid chromatography tandem mass spectrometry were developed for the analysis of benzotriazoles (BTs) and benzothiazoles (BThs), compounds which are commonly found in a large variety of commercial and household products. The first method was able to detect 7 BTs and 7 BThs, the largest suite of BTs and BThs analysed in a single method to-date, but could not distinguish between the isomers, 4-methylbenzotriazole (4-MeBT) and 5-methylbenzotriazole (5-MeBT). Therefore, a second method was developed to achieve the chromatographic separation of 4-MeBT and 5-MeBT. The methods were validated for ultrapure water and secondary wastewater, and method limits of detection (MLD) for BTs and BThs (for the primary method) ranged from 0.1 to 58ngL(-1) for ultrapure water, and 2 to 322ngL(-1) for secondary wastewater. For the secondary method, MLDs for 4- and 5-MeBT ranged from 8 to 12ngL(-1) for ultrapure water, and 388 to 406ngL(-1) for secondary wastewater. Analysis of secondary wastewater and reverse osmosis (RO) treated water from an advanced water recycling plant in Australia is presented, and represents the first reported data from the analysis of BTs and BThs in recycled water. Some of these compounds were found to persist through wastewater treatment and incompletely removed by RO treatment. Benzotriazole (BT), 4-MeBT, 5-MeBT and 2-(methylthio)benzothiazole were detected in secondary wastewater, however the latter compound was not quantifiable. Concentrations of BT and tolyltriazoles (TTs, i.e. sum of 4- and 5-MeBT, detected with the primary method) in secondary wastewater were 3.3 (±0.02) and 2.8 (±0.04)µgL(-1), respectively. These same compounds were also detected in the post-RO water samples at concentrations of 974 (±28)ngL(-1) for BT and 416(±34)ngL(-1) for TTs. 2-Hydroxybenzothiazole was also detected in the post-RO water samples, however it was not quantifiable. Removal efficiencies for RO treatment were calculated to be between 70% and 85% for BT and TTs.


Asunto(s)
Benzotiazoles/análisis , Cromatografía Liquida/métodos , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Aguas Residuales/análisis , Agua/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis
16.
J Chromatogr A ; 1241: 117-22, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22554415

RESUMEN

Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water.


Asunto(s)
Acetamidas/análisis , Agua Potable/química , Hidrocarburos Bromados/análisis , Hidrocarburos Clorados/análisis , Metano/análogos & derivados , Nitrocompuestos/análisis , Acetamidas/química , Australia , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Bromados/química , Hidrocarburos Clorados/química , Concentración de Iones de Hidrógeno , Límite de Detección , Metano/análisis , Nitrocompuestos/química , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-20390901

RESUMEN

A lack of knowledge of the health and environmental risks associated with chemicals of concern (COCs) and also of their removal by advanced treatment processes, such as micro-filtration (MF) and reverse osmosis (RO), have been major barriers preventing establishment of large water recycling schemes. As part of a larger project monitoring over 300 COCs, iodinated X-ray contrast media compounds (ICM) were analysed in treated secondary wastewater intended for drinking purposes. ICM are the most widely administered intravascular pharmaceuticals and are known to persist in the aquatic environment. A direct injection liquid chromatography tandem mass spectrometry (DI-LC-MS/MS) method was used to monitor secondary treated wastewater from three major wastewater treatment plants in Perth, Western Australia. In addition, tertiary water treated with MF and RO was analysed from a pilot plant that has been built as a first step in trialling the aquifer recharge. Results collected during 2007 demonstrate that MF/RO treatment is capable of removing ICM to below the analytical limits of detection, with average RO rejection calculated to be greater than 92%. A screening health risk assessment indicated negligible human risk at the concentrations observed in wastewater.


Asunto(s)
Medios de Contraste , Radioisótopos de Yodo , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida , Proyectos Piloto , Espectrometría de Masas en Tándem
18.
J Chromatogr A ; 1216(31): 5807-18, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19560149

RESUMEN

A solid-phase extraction (SPE) LC-MS/MS method for 18 commercial drugs in secondary wastewater and product water from water recycling plants using microfiltration (MF) and reverse osmosis (RO) has been developed, optimised and validated. The method incorporates a range of multi-class pharmaceuticals including lipid lowering agents, analgesics, antipyretics, non-steroidal anti-inflammatory drugs, antidepressants, anticoagulants, tranquilizers, cytostatic agents, and antiepileptics. Method limits of quantitation (MLQs) in secondary wastewater ranged from 15 to 250 ng/L, while MLQs in post-RO water ranged from 1 to 25 ng/L. Results from analysis of secondary wastewater from Western Australia are presented, and represent the largest survey of non-antibiotic pharmaceuticals within Australia to date. Analysis of post-RO water from two MF/RO water recycling facilities also demonstrate that MF/RO treatment removes most pharmaceuticals to below the analytical limits of detection, and more importantly, up to seven orders of magnitude below health-based guideline values.


Asunto(s)
Cromatografía Liquida/métodos , Residuos Industriales/análisis , Preparaciones Farmacéuticas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Industria Farmacéutica , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Purificación del Agua/métodos
19.
J Chromatogr A ; 1213(2): 200-8, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18980771

RESUMEN

The iodinated X-ray contrast media are the most widely administered intravascular pharmaceuticals and are known to persist in the aquatic environment. A rapid method using direct injection liquid chromatography-tandem mass spectrometry (DI-LC-MS/MS) has been developed to measure eight ICM. These include iopamidol, iothalamic acid, diatrizoic acid, iohexol, iomeprol, iopromide, plus both ioxaglic acid and iodipamide, which have not previously reported in the literature. The LC-MS/MS fragmentation patterns obtained for each of the compounds are discussed and the fragments lost for each transition are identified. Matrix effects in post-RO water, MQ water, tap water and secondary effluent have also been investigated. The DI-LC-MS/MS method was validated on both secondary and tertiary treated wastewater, and applied to samples from an advanced activated sludge wastewater treatment plant (WWTP) and a water recycling facility using microfiltration (MF) and reverse osmosis (RO) in Perth, Western Australia. As well as providing information of the efficacy for RO to remove specific ICM, these results also represent the first values of ICM published in the literature for Australia.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medios de Contraste/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Diatrizoato/análisis , Yohexol/análogos & derivados , Yohexol/análisis , Yopamidol/análogos & derivados , Yopamidol/análisis , Ácido Yotalámico/análisis , Incertidumbre , Purificación del Agua/métodos
20.
J Environ Qual ; 31(3): 822-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12026085

RESUMEN

Oxic resuspension occurs regularly in shallow lakes, yet its role as a mechanism for contaminant remobilization remains ill defined. This study investigated contaminant remobilization during sediment resuspension and determined whether changes in contaminant sediment partitioning reflected the mechanisms controlling remobilization. Arsenic-contaminated sediment from a shallow wetland was subjected to simulated resuspension under a range of differing initial pH conditions. The effect of resuspension on As partitioning was evaluated using a fractionation scheme targeting the dissolved, ion exchangeable, carbonate, organic, amorphous iron oxide, crystalline iron oxide, and apatite fractions. Rate investigations demonstrated that arsenic remobilization occurred on timescales similar to resuspension events, with concentrations reaching steady state within 24 h. The sediment also buffered slurry pH to 8.3 in experiments where the initial pH was between 4 and 10. This pH regulation was attributed to carbonate dissolution or acid-base equilibria of surface base functional groups, although iron oxide and organic matter dissolution did occur in experiments with an initial pH outside this range. Remobilization caused losses in arsenic associated with the ion exchangeable, organic, and amorphous iron fractions but changes in initial pH have a negligible effect on arsenic remobilization or partitioning within the well-buffered region. Resuspension released approximately 20% of the total sediment arsenic, although calculations indicated that a single resuspension event would not significantly change water column arsenic concentrations. While not conclusively proving the mechanisms of remobilization, fractionation gave valuable insight into the effect of sediment resuspension on contaminant remobilization.


Asunto(s)
Arsénico/química , Contaminantes Químicos del Agua/análisis , Fraccionamiento Químico , Agua Dulce , Sedimentos Geológicos , Humanos , Concentración de Iones de Hidrógeno , Equilibrio Postural , Suspensiones , Contaminación del Agua/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...