Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Magn Reson Chem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785031

RESUMEN

The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.

2.
Biochemistry ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38264995

RESUMEN

The basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor (TF) MYC is in large part an intrinsically disordered oncoprotein. In complex with its obligate heterodimerization partner MAX, MYC preferentially binds E-Box DNA sequences (CANNTG). At promoters containing these sequence motifs, MYC controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. A vast network of proteins in turn regulates MYC function via intermolecular interactions. In this work, we establish another layer of MYC regulation by intramolecular interactions. We used nuclear magnetic resonance (NMR) spectroscopy to identify and map multiple binding sites for the C-terminal MYC:MAX DNA-binding domain (DBD) on the intrinsically disordered regions (IDRs) in the MYC N-terminus. We find that these binding events in trans are driven by electrostatic attraction, that they have distinct affinities, and that they are competitive with DNA binding. Thereby, we observe the strongest effects for the N-terminal MYC box 0 (Mb0), a conserved motif involved in MYC transactivation and target gene induction. We prepared recombinant full-length MYC:MAX complex and demonstrate that the interactions identified in this work are also relevant in cis, i.e., as intramolecular interactions. These findings are supported by surface plasmon resonance (SPR) experiments, which revealed that intramolecular IDR:DBD interactions in MYC decelerate the association of MYC:MAX complexes to DNA. Our work offers new insights into how bHLH-LZ TFs are regulated by intramolecular interactions, which open up new possibilities for drug discovery.

3.
Nat Commun ; 14(1): 5497, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679328

RESUMEN

Human interleukin-1ß (hIL-1ß) is a pro-inflammatory cytokine involved in many diseases. While hIL-1ß directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1ß-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1ß antagonist that blocks the interaction with the IL-1R1 receptor. Starting from a low affinity fragment-based screening hit 1, structure-based optimization resulted in a compound (S)-2 that binds and antagonizes hIL-1ß with single-digit micromolar activity in biophysical, biochemical, and cellular assays. X-ray analysis reveals an allosteric mode of action that involves a hitherto unknown binding site in hIL-1ß encompassing two loops involved in hIL-1R1/hIL-1ß interactions. We show that residues of this binding site are part of a conformationally excited state of the mature cytokine. The compound antagonizes hIL-1ß function in cells, including primary human fibroblasts, demonstrating the relevance of this discovery for future development of hIL-1ß directed therapeutics.


Asunto(s)
Citocinas , Delgadez , Humanos , Interleucina-1beta , Peso Molecular , Sitios de Unión , Biofisica
4.
J Control Release ; 361: 694-716, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567507

RESUMEN

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.


Asunto(s)
Curcumina , Vesículas Extracelulares , Ligandos , Vesículas Extracelulares/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Colesterol/metabolismo
5.
J Med Chem ; 65(24): 16173-16203, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36399068

RESUMEN

Rapid emergence of tumor resistance via RAS pathway reactivation has been reported from clinical studies of covalent KRASG12C inhibitors. Thus, inhibitors with broad potential for combination treatment and distinct binding modes to overcome resistance mutations may prove beneficial. JDQ443 is an investigational covalent KRASG12C inhibitor derived from structure-based drug design followed by extensive optimization of two dissimilar prototypes. JDQ443 is a stable atropisomer containing a unique 5-methylpyrazole core and a spiro-azetidine linker designed to position the electrophilic acrylamide for optimal engagement with KRASG12C C12. A substituted indazole at pyrazole position 3 results in novel interactions with the binding pocket that do not involve residue H95. JDQ443 showed PK/PD activity in vivo and dose-dependent antitumor activity in mouse xenograft models. JDQ443 is now in clinical development, with encouraging early phase data reported from an ongoing Phase Ib/II clinical trial (NCT04699188).


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Diseño de Fármacos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pirazoles/farmacología , Pirazoles/uso terapéutico
6.
J Mol Biol ; 434(22): 167833, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36174765

RESUMEN

The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using NMR spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Proteínas Intrínsecamente Desordenadas , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc , Quinasa de la Caseína II/química , ADN/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Proto-Oncogénicas c-myc/química , Serina/química , Mapeo de Interacción de Proteínas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Unión Proteica , Fosforilación
7.
ChemMedChem ; 17(13): e202200163, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35475323

RESUMEN

Ligand-based 19 F NMR screening is a highly effective and well-established hit-finding approach. The high sensitivity to protein binding makes it particularly suitable for fragment screening. Different criteria can be considered for generating fluorinated fragment libraries. One common strategy is to assemble a large, diverse, well-designed and characterized fragment library which is screened in mixtures, generated based on experimental 19 F NMR chemical shifts. Here, we introduce a complementary knowledge-based 19 F NMR screening approach, named 19 Focused screening, enabling the efficient screening of putative active molecules selected by computational hit finding methodologies, in mixtures assembled and on-the-fly deconvoluted based on predicted 19 F NMR chemical shifts. In this study, we developed a novel approach, named LEFshift, for 19 F NMR chemical shift prediction using rooted topological fluorine torsion fingerprints in combination with a random forest machine learning method. A demonstration of this approach to a real test case is reported.


Asunto(s)
Flúor , Imagen por Resonancia Magnética , Flúor/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Unión Proteica
8.
J Med Chem ; 65(7): 5317-5333, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35352560

RESUMEN

Polycomb Repressive Complex 2 (PRC2) plays an important role in transcriptional regulation during animal development and in cell differentiation, and alteration of PRC2 activity has been associated with cancer. On a molecular level, PRC2 catalyzes methylation of histone H3 lysine 27 (H3K27), resulting in mono-, di-, or trimethylated forms of H3K27, of which the trimethylated form H3K27me3 leads to transcriptional repression of polycomb target genes. Previously, we have shown that binding of the low-molecular-weight compound EED226 to the H3K27me3 binding pocket of the regulatory subunit EED can effectively inhibit PRC2 activity in cells and reduce tumor growth in mouse xenograft models. Here, we report the stepwise optimization of the tool compound EED226 toward the potent and selective EED inhibitor MAK683 (compound 22) and its subsequent preclinical characterization. Based on a balanced PK/PD profile, efficacy, and mitigated risk of forming reactive metabolites, MAK683 has been selected for clinical development.


Asunto(s)
Histonas , Neoplasias , Animales , Inhibidores Enzimáticos , Histonas/metabolismo , Humanos , Metilación , Ratones , Neoplasias/tratamiento farmacológico , Complejo Represivo Polycomb 2
9.
Angew Chem Int Ed Engl ; 59(35): 14809-14817, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32363632

RESUMEN

Fragment-based lead discovery has become a fundamental approach to identify ligands that efficiently interact with disease-relevant targets. Among the numerous screening techniques, fluorine-detected NMR has gained popularity owing to its high sensitivity, robustness, and ease of use. To effectively explore chemical space, a universal NMR experiment, a rationally designed fragment library, and a sample composition optimized for a maximal number of compounds and minimal measurement time are required. Here, we introduce a comprehensive method that enabled the efficient assembly of a high-quality and diverse library containing nearly 4000 fragments and screening for target-specific binders within days. At the core of the approach is a novel broadband relaxation-edited NMR experiment that covers the entire chemical shift range of drug-like 19 F motifs in a single measurement. Our approach facilitates the identification of diverse binders and the fast ligandability assessment of new targets.

10.
J Am Chem Soc ; 142(9): 4445-4455, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32064871

RESUMEN

The lipopolysaccharide biosynthesis pathway is considered an attractive drug target against the rising threat of multi-drug-resistant Gram-negative bacteria. Here, we report two novel small-molecule inhibitors (compounds 1 and 2) of the acyltransferase LpxA, the first enzyme in the lipopolysaccharide biosynthesis pathway. We show genetically that the antibacterial activities of the compounds against efflux-deficient Escherichia coli are mediated by LpxA inhibition. Consistently, the compounds inhibited the LpxA enzymatic reaction in vitro. Intriguingly, using biochemical, biophysical, and structural characterization, we reveal two distinct mechanisms of LpxA inhibition; compound 1 is a substrate-competitive inhibitor targeting apo LpxA, and compound 2 is an uncompetitive inhibitor targeting the LpxA/product complex. Compound 2 exhibited more favorable biological and physicochemical properties than compound 1 and was optimized using structural information to achieve improved antibacterial activity against wild-type E. coli. These results show that LpxA is a promising antibacterial target and imply the advantages of targeting enzyme/product complexes in drug discovery.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Pirazoles/farmacología , Aciltransferasas/metabolismo , Antibacterianos/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Imidazoles/metabolismo , Pruebas de Sensibilidad Microbiana , Unión Proteica , Pirazoles/metabolismo
11.
Methods Enzymol ; 614: 1-36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30611421

RESUMEN

Escherichia coli expression protocols for selective labeling of methyl groups in proteins have been essential in expanding the size range of targets that can be studied by biomolecular NMR. Based on the initial work achieving selective labeling of isoleucine, leucine, and valine residues, additional methods were developed over the past years which enabled the individual and/or simultaneous combinatorial labeling of all methyl containing amino acids. Together with the introduction of new methyl-optimized NMR experiments, this now allows the detailed characterization of protein-ligand interactions as well as mechanistic and dynamic processes of protein-protein complexes up to 1MDa in size. In this chapter, we provide a general introduction to selective labeling of proteins using E. coli-based expression systems, describe the considerations taken into account prior to the selective labeling of a protein, and include the protocols used to produce such proteins. An overview of applications using selectively labeled proteins with an emphasis on examples relevant to the drug discovery process is then presented.


Asunto(s)
Proteínas de Escherichia coli/química , Marcaje Isotópico/métodos , Leucina/química , Espectroscopía de Resonancia Magnética/métodos , Coloración y Etiquetado/métodos , Valina/química , Descubrimiento de Drogas , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Humanos , Leucina/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética/instrumentación , Metilación , Simulación de Dinámica Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Valina/metabolismo
12.
J Med Chem ; 61(8): 3309-3324, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29498517

RESUMEN

The discovery and development of new antibiotics capable of curing infections due to multidrug-resistant and pandrug-resistant Gram-negative bacteria are a major challenge with fundamental importance to our global healthcare system. Part of our broad program at Novartis to address this urgent, unmet need includes the search for new agents that inhibit novel bacterial targets. Here we report the discovery and hit-to-lead optimization of new inhibitors of phosphopantetheine adenylyltransferase (PPAT) from Gram-negative bacteria. Utilizing a fragment-based screening approach, we discovered a number of unique scaffolds capable of interacting with the pantetheine site of E. coli PPAT and inhibiting enzymatic activity, including triazolopyrimidinone 6. Structure-based optimization resulted in the identification of two lead compounds as selective, small molecule inhibitors of bacterial PPAT: triazolopyrimidinone 53 and azabenzimidazole 54 efficiently inhibited E. coli and P. aeruginosa PPAT and displayed modest cellular potency against the efflux-deficient E. coli Δ tolC mutant strain.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Compuestos Heterocíclicos con 2 Anillos/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/metabolismo , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Sitios de Unión , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pirimidinonas/síntesis química , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacología , Triazoles/síntesis química , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
13.
J Med Chem ; 61(8): 3325-3349, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29551072

RESUMEN

In the preceding manuscript [ Moreau et al. 2018 , 10.1021/acs.jmedchem.7b01691 ] we described a successful fragment-based lead discovery (FBLD) strategy for discovery of bacterial phosphopantetheine adenylyltransferase inhibitors (PPAT, CoaD). Following several rounds of optimization two promising lead compounds were identified: triazolopyrimidinone 3 and 4-azabenzimidazole 4. Here we disclose our efforts to further optimize these two leads for on-target potency and Gram-negative cellular activity. Enabled by a robust X-ray crystallography system, our structure-based inhibitor design approach delivered compounds with biochemical potencies 4-5 orders of magnitude greater than their respective fragment starting points. Additional optimization was guided by observations on bacterial permeability and physicochemical properties, which ultimately led to the identification of PPAT inhibitors with cellular activity against wild-type E. coli.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Compuestos Heterocíclicos con 2 Anillos/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/metabolismo , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Sitios de Unión , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mutación , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Pirimidinonas/síntesis química , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacología , Triazoles/síntesis química , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
14.
J Am Chem Soc ; 139(49): 17824-17833, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29190085

RESUMEN

Structure-based drug design is an integral part of modern day drug discovery and requires detailed structural characterization of protein-ligand interactions, which is most commonly performed by X-ray crystallography. However, the success rate of generating these costructures is often variable, in particular when working with dynamic proteins or weakly binding ligands. As a result, structural information is not routinely obtained in these scenarios, and ligand optimization is challenging or not pursued at all, representing a substantial limitation in chemical scaffolds and diversity. To overcome this impediment, we have developed a robust NMR restraint guided docking protocol to generate high-quality models of protein-ligand complexes. By combining the use of highly methyl-labeled protein with experimentally determined intermolecular distances, a comprehensive set of protein-ligand distances is generated which then drives the docking process and enables the determination of the correct ligand conformation in the bound state. For the first time, the utility and performance of such a method is fully demonstrated by employing the generated models for the successful, prospective optimization of crystallographically intractable fragment hits into more potent binders.


Asunto(s)
Ligandos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Proteínas/química , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Unión Proteica , Proteínas/metabolismo
15.
PLoS One ; 12(4): e0174706, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384226

RESUMEN

RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.


Asunto(s)
Lípidos/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Prenilación
16.
Nat Chem Biol ; 13(4): 381-388, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135235

RESUMEN

Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12, and plays pivotal roles in transcriptional regulation. The catalytic subunit EZH2 methylates histone H3 lysine 27 (H3K27), and its activity is further enhanced by the binding of EED to trimethylated H3K27 (H3K27me3). Small-molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported. Here we report the discovery of EED226, a potent and selective PRC2 inhibitor that directly binds to the H3K27me3 binding pocket of EED. EED226 induces a conformational change upon binding EED, leading to loss of PRC2 activity. EED226 shows similar activity to SAM-competitive inhibitors in blocking H3K27 methylation of PRC2 target genes and inducing regression of human lymphoma xenograft tumors. Interestingly, EED226 also effectively inhibits PRC2 containing a mutant EZH2 protein resistant to SAM-competitive inhibitors. Together, we show that EED226 inhibits PRC2 activity via an allosteric mechanism and offers an opportunity for treatment of PRC2-dependent cancers.


Asunto(s)
Antineoplásicos/farmacología , Histonas/metabolismo , Lisina/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonas/química , Sulfonas/farmacología , Triazoles/química , Triazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Histonas/química , Humanos , Lisina/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Relación Estructura-Actividad , Sulfonas/metabolismo , Triazoles/metabolismo , Células Tumorales Cultivadas
17.
PLoS One ; 12(1): e0169855, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072869

RESUMEN

Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonas/farmacología , Triazoles/farmacología , Animales , Sitios de Unión , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Ratones , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Relación Estructura-Actividad Cuantitativa , Sulfonas/química , Triazoles/química
18.
J Med Chem ; 60(6): 2215-2226, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28092155

RESUMEN

Overexpression and somatic heterozygous mutations of EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), are associated with several tumor types. EZH2 inhibitor, EPZ-6438 (tazemetostat), demonstrated clinical efficacy in patients with acceptable safety profile as monotherapy. EED, another subunit of PRC2 complex, is essential for its histone methyltransferase activity through direct binding to trimethylated lysine 27 on histone 3 (H3K27Me3). Herein we disclose the discovery of a first-in-class potent, selective, and orally bioavailable EED inhibitor compound 43 (EED226). Guided by X-ray crystallography, compound 43 was discovered by fragmentation and regrowth of compound 7, a PRC2 HTS hit that directly binds EED. The ensuing scaffold hopping followed by multiparameter optimization led to the discovery of 43. Compound 43 induces robust and sustained tumor regression in EZH2MUT preclinical DLBCL model. For the first time we demonstrate that specific and direct inhibition of EED can be effective as an anticancer strategy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonas/química , Sulfonas/farmacología , Triazoles/química , Triazoles/farmacología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Perros , Femenino , Haplorrinos , Histonas/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Lisina/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Ratas , Sulfonas/farmacocinética , Sulfonas/uso terapéutico , Triazoles/farmacocinética , Triazoles/uso terapéutico
19.
J Med Chem ; 60(1): 415-427, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-27992714

RESUMEN

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


Asunto(s)
Inhibidores Enzimáticos/química , Epigénesis Genética , Metiltransferasas/antagonistas & inhibidores , Complejo Represivo Polycomb 2/química , Regulación Alostérica , Células CACO-2 , Cromatografía Liquida , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Espectrometría de Masas , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad
20.
J Biomol NMR ; 65(1): 15-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27130242

RESUMEN

The deuteration of proteins and selective labeling of side chain methyl groups has greatly enhanced the molecular weight range of proteins and protein complexes which can be studied using solution NMR spectroscopy. Protocols for the selective labeling of all six methyl group containing amino acids individually are available, however to date, only a maximum of five amino acids have been labeled simultaneously. Here, we describe a new methodology for the simultaneous, selective labeling of all six methyl containing amino acids using the 115 kDa homohexameric enzyme CoaD from E. coli as a model system. The utility of the labeling protocol is demonstrated by efficiently and unambiguously assigning all methyl groups in the enzymatic active site using a single 4D (13)C-resolved HMQC-NOESY-HMQC experiment, in conjunction with a crystal structure. Furthermore, the six fold labeled protein was employed to characterize the interaction between the substrate analogue (R)-pantetheine and CoaD by chemical shift perturbations, demonstrating the benefit of the increased probe density.


Asunto(s)
Aminoácidos/química , Resonancia Magnética Nuclear Biomolecular , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Nucleotidiltransferasas/química , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA