Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474322

RESUMEN

Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Neuritis Óptica , Ratas , Animales , Ratones , Neuritis Óptica/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Nervio Óptico/metabolismo , Hipoxia/metabolismo , Factores Inmunológicos/metabolismo , Ratones Endogámicos C57BL
2.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37705188

RESUMEN

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Asunto(s)
Trastorno Depresivo Mayor , Esclerosis Múltiple , Animales , Ratas , Factor 1 de Crecimiento de Fibroblastos , Factor 2 de Crecimiento de Fibroblastos , Factor 9 de Crecimiento de Fibroblastos
3.
Artículo en Inglés | MEDLINE | ID: mdl-37429715

RESUMEN

BACKGROUND AND OBJECTIVES: Mechanisms of visual impairment in aquaporin 4 antibody (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disorder (MOGAD) are incompletely understood. The respective impact of optic nerve demyelination and primary and secondary retinal neurodegeneration are yet to be investigated in animal models. METHODS: Active MOG35-55 experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6Jrj mice, and monoclonal MOG-IgG (8-18C5, murine), recombinant AQP4-IgG (rAb-53, human), or isotype-matched control IgG (Iso-IgG, human) was administered 10 days postimmunization. Mobility impairment was scored daily. Visual acuity by optomotor reflex and ganglion cell complex thickness (GCC, 3 innermost retinal layers) by optical coherence tomography (OCT) were longitudinally assessed. Histopathology of optic nerve and retina was investigated during presymptomatic, acute, and chronic disease phases for immune cells, demyelination, complement deposition, natural killer (NK) cell, AQP4, and astrocyte involvement, retinal ganglion cells (RGCs), and Müller cell activation. Groups were compared by nonparametric tests with a p value <0.05 indicating statistical significance. RESULTS: Visual acuity decreased from baseline to chronic phase in MOG-IgG (mean ± standard error of the mean: 0.54 ± 0.01 to 0.46 ± 0.02 cycles/degree, p < 0.05) and AQP4-IgG EAE (0.54 ± 0.01 to 0.43 ± 0.02, cycles/degree, p < 0.05). Immune cell infiltration of optic nerves started in presymptomatic AQP4-IgG, but not in MOG-IgG EAE (5.85 ± 2.26 vs 0.13 ± 0.10 macrophages/region of interest [ROI] and 1.88 ± 0.63 vs 0.15 ± 0.06 T cells/ROI, both p < 0.05). Few NK cells, no complement deposition, and stable glial fibrillary acid protein and AQP4 fluorescence intensity characterized all EAE optic nerves. Lower GCC thickness (Spearman correlation coefficient r = -0.44, p < 0.05) and RGC counts (r = -0.47, p < 0.05) correlated with higher mobility impairment. RGCs decreased from presymptomatic to chronic disease phase in MOG-IgG (1,705 ± 51 vs 1,412 ± 45, p < 0.05) and AQP4-IgG EAE (1,758 ± 14 vs 1,526 ± 48, p < 0.01). Müller cell activation was not observed in either model. DISCUSSION: In a multimodal longitudinal characterization of visual outcome in animal models of MOGAD and NMOSD, differential retinal injury and optic nerve involvement were not conclusively clarified. Yet optic nerve inflammation was earlier in AQP4-IgG-associated pathophysiology. Retinal atrophy determined by GCC thickness (OCT) and RGC counts correlating with mobility impairment in the chronic phase of MOG-IgG and AQP4-IgG EAE may serve as a generalizable marker of neurodegeneration.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Neuromielitis Óptica , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Nervio Óptico , Autoanticuerpos , Inmunoglobulina G , Anticuerpos Monoclonales
4.
Mult Scler Relat Disord ; 78: 104892, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499337

RESUMEN

Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) or aquaporin 4 (AQP4-IgG) are associated with CNS inflammatory disorders. We directly compared MOG35-55-induced experimental autoimmune encephalomyelitis exacerbated by MOG- and AQP4-IgG (versus isotype IgG, Iso-IgG). Disease severity was highest after MOG-IgG application. MOG- and AQP4-IgG administration increased disease incidence compared to Iso-IgG. Inflammatory lesions appeared earlier and with distinct localizations after AQP4-IgG administration. AQP4 intensity was more reduced after AQP4- than MOG-IgG administration at acute disease phase. The described models are suitable for comparative analyses of pathological features associated with MOG- and AQP4-IgG and the investigation of therapeutic interventions.

5.
Neuropathol Appl Neurobiol ; 49(1): e12868, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36520661

RESUMEN

AIMS: The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS: Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS: Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS: Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratas , Animales , Ratones , Esclerosis Múltiple/metabolismo , Médula Espinal/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Oxígeno/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
6.
Exp Neurol ; 354: 114113, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569511

RESUMEN

Iron released from oligodendrocytes during demyelination or derived from haemoglobin breakdown products is believed to amplify oxidative tissue injury in multiple sclerosis (MS). However, the pathophysiological significance of iron-containing haemoglobin breakdown products themselves is rarely considered in the context of MS and their cellular specificity and mode of action remain unclear. Using myelinating cell cultures, we now report the cytotoxic potential of hemin (ferriprotoporphyrin IX chloride), a major degradation product of haemoglobin, is 25-fold greater than equimolar concentrations of free iron in myelinating cultures; a model that reproduces the complex multicellular environment of the CNS. At low micro molar concentrations (3.3 - 10 µM) we observed hemin preferentially binds to myelin and axons to initiate a complex detrimental response that results in targeted demyelination and axonal loss but spares neuronal cell bodies, astrocytes and the majority of oligodendroglia. Demyelination and axonal loss in this context are executed by a combination of mechanisms that include iron-dependent peroxidation by reactive oxygen species (ROS) and ferroptosis. These effects are microglial-independent, do not require any initiating inflammatory insult and represent a direct effect that compromises the structural integrity of myelinated axons in the CNS. Our data identify hemin-mediated demyelination and axonal loss as a novel mechanism by which intracerebral degradation of haemoglobin may contribute to lesion development in MS.


Asunto(s)
Hemina , Esclerosis Múltiple , Axones/patología , Sistema Nervioso Central/patología , Hemina/metabolismo , Hemina/farmacología , Humanos , Hierro/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Estrés Oxidativo
7.
Front Mol Neurosci ; 15: 860410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493328

RESUMEN

Zika virus (ZIKV) is a neurotropic flavivirus recently linked to congenital ZIKV syndrome in children and encephalitis and Guillain-Barré syndrome in adults. Neurotropic viruses often use axons to traffic to neuronal or glial cell somas where they either remain latent or replicate and proceed to infect new cells. Consequently, it has been suggested that axon degeneration could represent an evolutionarily conserved mechanism to limit viral spread. Whilst it is not known if ZIKV transits in axons, we previously reported that ZIKV infection of glial cells in a murine spinal cord-derived cell culture model of the CNS is associated with a profound loss of neuronal cell processes. This, despite that postmitotic neurons are relatively refractory to infection and death. Here, we tested the hypothesis that ZIKV-associated degeneration of neuronal processes is dependent on activation of Sterile alpha and armadillo motif-containing protein 1 (SARM1), an NADase that acts as a central executioner in a conserved axon degeneration pathway. To test this, we infected wild type and Sarm1 homozygous or heterozygous null cell cultures with ZIKV and examined NAD+ levels as well as the survival of neurons and their processes. Unexpectedly, ZIKV infection led to a rapid SARM1-independent reduction in NAD+. Nonetheless, the subsequent profound loss of neuronal cell processes was SARM1-dependent and was preceded by early changes in the appearance of ß-tubulin III staining. Together, these data identify a role for SARM1 in the pathogenesis of ZIKV infection, which may reflect SARM1's conserved prodegenerative function, independent of its NADase activity.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35027475

RESUMEN

BACKGROUND AND OBJECTIVES: Myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD) is a rare, autoimmune demyelinating CNS disorder, distinct from multiple sclerosis and neuromyelitis optica spectrum disorder. Characterized by pathogenic immunoglobulin G (IgG) antibodies against MOG, a potential treatment strategy for MOGAD is to reduce circulating IgG levels, e.g., by interference with the IgG recycling pathway mediated by the neonatal Fc receptor (FcRn). Although the optic nerve is often detrimentally involved in MOGAD, the effect of FcRn blockade on the visual pathway has not been assessed. Our objective was to investigate effects of a monoclonal anti-FcRn antibody in murine MOG-IgG-associated experimental autoimmune encephalomyelitis (EAE). METHODS: We induced active MOG35-55 EAE in C57Bl/6 mice followed by the application of a monoclonal MOG-IgG (8-18C5) 10 days postimmunization (dpi). Animals were treated with either a specific monoclonal antibody against FcRn (α-FcRn, 4470) or an isotype-matched control IgG on 7, 10, and 13 dpi. Neurologic disability was scored daily on a 10-point scale. Visual acuity was assessed by optomotor reflex. Histopathologic hallmarks of disease were assessed in the spinal cord, optic nerve, and retina. Immune cell infiltration was visualized by immunohistochemistry, demyelination by Luxol fast blue staining and complement deposition and number of retinal ganglion cells by immunofluorescence. RESULTS: In MOG-IgG-augmented MOG35-55 EAE, anti-FcRn treatment significantly attenuated neurologic disability over the course of disease (mean area under the curve and 95% confidence intervals (CIs): α-FcRn [n = 27], 46.02 [37.89-54.15]; isotype IgG [n = 24], 66.75 [59.54-73.96], 3 independent experiments), correlating with reduced amounts of demyelination and macrophage infiltration into the spinal cord. T- and B-cell infiltration and complement deposition remained unchanged. Compared with isotype, anti-FcRn treatment prevented reduction of visual acuity over the course of disease (median cycles/degree and interquartile range: α-FcRn [n = 16], 0.50 [0.48-0.55] to 0.50 [0.48-0.58]; isotype IgG [n = 17], 0.50 [0.49-0.54] to 0.45 [0.39-0.51]). DISCUSSION: We show preserved optomotor response and ameliorated course of disease after anti-FcRn treatment in an experimental model using a monoclonal MOG-IgG to mimic MOGAD. Selectively targeting FcRn might represent a promising therapeutic approach in MOGAD.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Receptores Fc/inmunología , Animales , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/etiología , Femenino , Ratones , Ratones Endogámicos C57BL , Trastornos de la Visión
9.
Acta Neuropathol Commun ; 10(1): 12, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093166

RESUMEN

One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood-brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Interleucina-16/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Vaina de Mielina/metabolismo , Mucosa Olfatoria/citología , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Ratones , Neurogénesis/fisiología
10.
Lancet Neurol ; 20(9): 762-772, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34418402

RESUMEN

Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes Desmielinizantes SNC/diagnóstico , Glicoproteína Mielina-Oligodendrócito/inmunología , Adolescente , Adulto , Biomarcadores , Niño , Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Autoinmunes Desmielinizantes SNC/fisiopatología , Humanos , Factores Inmunológicos/farmacología , Persona de Mediana Edad , Adulto Joven
11.
Glia ; 69(8): 2023-2036, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33942402

RESUMEN

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Neuronas , Oligodendroglía , Embarazo , Infección por el Virus Zika/complicaciones
12.
Viruses ; 13(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440758

RESUMEN

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination-which is critical for saltatory conduction and neuronal function-has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


Asunto(s)
Axones/virología , Enfermedades Desmielinizantes/etiología , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Biomarcadores , Traumatismos del Nervio Craneal/etiología , Traumatismos del Nervio Craneal/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Ratas , Transcriptoma
13.
Ann Neurol ; 88(1): 123-136, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32293054

RESUMEN

OBJECTIVE: Treatment of relapses in multiple sclerosis (MS) has not advanced beyond steroid use, which reduces acute loss of function, but has little effect on residual disability. Acute loss of function in an MS model (experimental autoimmune encephalomyelitis [EAE]) is partly due to central nervous system (CNS) hypoxia, and function can promptly improve upon breathing oxygen. Here, we investigate the cause of the hypoxia and whether it is due to a deficit in oxygen supply arising from impaired vascular perfusion. We also explore whether the CNS-selective vasodilating agent, nimodipine, may provide a therapy to restore function, and protect from demyelination in 2 MS models. METHODS: A variety of methods have been used to measure basic cardiovascular physiology, spinal oxygenation, mitochondrial function, and tissue perfusion in EAE. RESULTS: We report that the tissue hypoxia in EAE is associated with a profound hypoperfusion of the inflamed spinal cord. Treatment with nimodipine restores spinal oxygenation and can rapidly improve function. Nimodipine therapy also reduces demyelination in both EAE and a model of the early MS lesion. INTERPRETATION: Loss of function in EAE, and demyelination in EAE, and the model of the early MS lesion, seem to be due, at least in part, to tissue hypoxia due to local spinal hypoperfusion. Therapy to improve blood flow not only protects neurological function but also reduces demyelination. We conclude that nimodipine could be repurposed to offer substantial clinical benefit in MS. ANN NEUROL 2020 ANN NEUROL 2020;88:123-136.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Nimodipina/uso terapéutico , Médula Espinal/patología , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Imagen por Resonancia Magnética , Masculino , Vaina de Mielina/patología , Ratas , Ratas Sprague-Dawley
14.
Acta Neuropathol Commun ; 7(1): 212, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856924

RESUMEN

Fibroblast growth factor (FGF) signaling contributes to failure of remyelination in multiple sclerosis, but targeting this therapeutically is complicated by its functional pleiotropy. We now identify FGF2 as a factor up-regulated by astrocytes in active inflammatory lesions that disrupts myelination via FGF receptor 2 (FGFR2) mediated activation of Wingless (Wnt) signaling; pharmacological inhibition of Wnt being sufficient to abrogate inhibition of myelination by FGF2 in tissue culture. Using a novel FGFR1-selective agonist (F2 V2) generated by deleting the N-terminal 26 amino acids of FGF2 we demonstrate polarizing signal transduction to favor FGFR1 abrogates FGF mediated inhibition of myelination but retains its ability to induce expression of pro-myelinating and immunomodulatory factors that include Cd93, Lif, Il11, Hbegf, Cxcl1 and Timp1. Our data provide new insights into the mechanistic basis of remyelination failure in MS and identify selective activation of FGFR1 as a novel strategy to induce a neuroprotective signaling environment in multiple sclerosis and other neurological diseases.


Asunto(s)
Astrocitos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Esclerosis Múltiple/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuroprotección/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/biosíntesis , Animales , Astrocitos/química , Astrocitos/patología , Factor 2 de Crecimiento de Fibroblastos/análisis , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Fibras Nerviosas Mielínicas/patología , Ratas , Ratas Sprague-Dawley
15.
Cells ; 8(11)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726669

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system. Neurological deficits are attributed to inflammatory demyelination, which compromises axonal function and survival. These are mitigated in experimental models by rapid and often complete remyelination of affected axons, but in MS this endogenous repair mechanism frequently fails, leaving axons increasingly vulnerable to the detrimental effects of inflammatory and metabolic stress. Understanding the molecular basis of remyelination and remyelination failure is essential to develop improved therapies for this devastating disease. However, recent studies suggest that this is not due to a single dominant mechanism, but rather represents the biological outcome of multiple changes in the lesion microenvironment that combine to disrupt oligodendrocyte differentiation. This identifies a pressing need to develop technical platforms to investigate combinatory and/or synergistic effects of factors differentially expressed in MS lesions on oligodendrocyte proliferation and differentiation. Here we describe protocols using primary oligodendrocyte cultures from Bl6 mice on 384-well nanofiber plates to model changes affecting oligodendrogenesis and differentiation in the complex signaling environment associated with multiple sclerosis lesions. Using platelet-derived growth factor (PDGF-AA), fibroblast growth factor 2 (FGF2), bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 4 (BMP4) as representative targets, we demonstrate that we can assess their combinatory effects across a wide range of concentrations in a single experiment. This in vitro model is ideal for assessing the combinatory effects of changes in availability of multiple factors, thus more closely modelling the situation in vivo and furthering high-throughput screening possibilities.


Asunto(s)
Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Cultivo Primario de Células/instrumentación , Animales , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Ratones , Modelos Teóricos , Esclerosis Múltiple/terapia , Nanofibras , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Cultivo Primario de Células/métodos
16.
F1000Res ; 8: 117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069065

RESUMEN

The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs).  Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.


Asunto(s)
Modelos Biológicos , Esclerosis Múltiple , Traumatismos de la Médula Espinal , Sustancia Blanca , Animales , Axones , Humanos , Ratones , Vaina de Mielina
17.
Glia ; 67(3): 512-524, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578556

RESUMEN

Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Although it is the presenting symptom in many cases, the initial events are currently unknown. However, in the earliest stages of autoimmune optic neuritis in rats, pathological changes are already apparent such as microglial activation and disturbances in myelin ultrastructure of the optic nerves. αB-crystallin is a heat-shock protein induced in cells undergoing cellular stress and has been reported to be up-regulated in both multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Therefore, we wished to investigate the timing and localization of its expression in autoimmune optic neuritis. Although loss of oligodendrocytes was not observed until the later disease stages accompanying immune cell infiltration and demyelination, an increase in oligodendrocyte αB-crystallin was observed during the preclinical stages. This was most pronounced within the optic nerve head and was associated with areas of IgG deposition. Since treatment of isolated oligodendrocytes with sera from myelin oligodendrocyte glycoprotein (MOG)-immunized animals induced an increase in αB-crystallin expression, as did passive transfer of sera from MOG-immunized animals to unimmunized recipients, we propose that the partially permeable blood-brain barrier of the optic nerve head may present an opportunity for blood-borne components such as anti-MOG antibodies to come into contact with oligodendrocytes as one of the earliest events in disease development.


Asunto(s)
Enfermedades Autoinmunes/patología , Encefalomielitis Autoinmune Experimental/patología , Nervio Óptico/patología , Neuritis Óptica/patología , Animales , Enfermedades Autoinmunes/inmunología , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Oligodendroglía/inmunología , Oligodendroglía/patología , Nervio Óptico/inmunología , Neuritis Óptica/inmunología , Ratas , Ratas Sprague-Dawley
18.
Acta Neuropathol Commun ; 5(1): 50, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28645311

RESUMEN

The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences.


Asunto(s)
Vaina de Mielina/virología , Neuronas/virología , Tropismo Viral , Virus Zika/fisiología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ganglios Espinales/inmunología , Ganglios Espinales/patología , Ganglios Espinales/virología , Inmunohistoquímica , Ratones de la Cepa 129 , Ratones Noqueados , Vaina de Mielina/inmunología , Vaina de Mielina/patología , Neuronas/inmunología , Neuronas/patología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Médula Espinal/inmunología , Médula Espinal/patología , Médula Espinal/virología , Infección por el Virus Zika/patología , Infección por el Virus Zika/fisiopatología , Infección por el Virus Zika/virología
19.
Acta Neuropathol ; 134(1): 15-34, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28386765

RESUMEN

Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2+ monocytes are required for both. Depleting CCR2+ monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2+ monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS.


Asunto(s)
Corteza Cerebral/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Monocitos/inmunología , Esclerosis Múltiple/inmunología , Adulto , Animales , Callithrix , Corteza Cerebral/patología , Estudios de Cohortes , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Masculino , Meninges/inmunología , Meninges/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Monocitos/patología , Esclerosis Múltiple/patología , Distribución Aleatoria , Receptores CCR2/metabolismo , Linfocitos T/inmunología , Linfocitos T/patología
20.
Neurol Neuroimmunol Neuroinflamm ; 3(1): e191, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26770997

RESUMEN

OBJECTIVE: We aimed to examine the regulation of lipocalin-2 (LCN2) in multiple sclerosis (MS) and its potential functional relevance with regard to myelination and neurodegeneration. METHODS: We determined LCN2 levels in 3 different studies: (1) in CSF and plasma from a case-control study comparing patients with MS (n = 147) with controls (n = 50) and patients with relapsing-remitting MS (n = 75) with patients with progressive MS (n = 72); (2) in CSF and brain tissue microdialysates from a case series of 7 patients with progressive MS; and (3) in CSF at baseline and 60 weeks after natalizumab treatment in a cohort study of 17 patients with progressive MS. Correlation to neurofilament light, a marker of neuroaxonal injury, was tested. The effect of LCN2 on myelination and neurodegeneration was studied in a rat in vitro neuroglial cell coculture model. RESULTS: Intrathecal production of LCN2 was increased predominantly in patients with progressive MS (p < 0.005 vs relapsing-remitting MS) and displayed a positive correlation to neurofilament light (p = 0.005). Levels of LCN2 in brain microdialysates were severalfold higher than in the CSF, suggesting local production in progressive MS. Treatment with natalizumab in progressive MS reduced LCN2 levels an average of 13% (p < 0.0001). LCN2 was found to inhibit remyelination in a dose-dependent manner in vitro. CONCLUSIONS: LCN2 production is predominantly increased in progressive MS. Although this moderate increase does not support the use of LCN2 as a biomarker, the correlation to neurofilament light and the inhibitory effect on remyelination suggest that LCN2 might contribute to neurodegeneration through myelination-dependent pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA