Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 169: 112135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38744145

RESUMEN

Articular cartilage exhibits site-specific biomechanical properties. However, no study has comprehensively characterized site-specific cartilage properties from the same knee joints at different stages of osteoarthritis (OA). Cylindrical osteochondral explants (n = 381) were harvested from donor-matched lateral and medial tibia, lateral and medial femur, patella, and trochlea of cadaveric knees (N = 17). Indentation test was used to measure the elastic and viscoelastic mechanical properties of the samples, and Osteoarthritis Research Society International (OARSI) grading system was used to categorize the samples into normal (OARSI 0-1), early OA (OARSI 2-3), and advanced OA (OARSI 4-5) groups. OA-related changes in cartilage mechanical properties were site-specific. In the lateral and medial tibia and trochlea sites, equilibrium, instantaneous and dynamic moduli were higher (p < 0.001) in normal tissue than in early and advanced OA tissue. In lateral and medial femur, equilibrium, instantaneous and dynamic moduli were smaller in advanced OA, but not in early OA, than in normal tissue. The phase difference (0.1-0.25 Hz) between stress and strain was significantly smaller (p < 0.05) in advanced OA than in normal tissue across all sites except medial tibia. Our results indicated that in contrast to femoral and patellar cartilage, equilibrium, instantaneous and dynamic moduli of the tibia and trochlear cartilage decreased in early OA. These may suggest that the tibia and trochlear cartilage degrades faster than the femoral and patellar cartilage. The information is relevant for developing site-specific computational models and engineered cartilage constructs.


Asunto(s)
Cartílago Articular , Articulación de la Rodilla , Osteoartritis de la Rodilla , Humanos , Cartílago Articular/fisiopatología , Cartílago Articular/fisiología , Cartílago Articular/patología , Articulación de la Rodilla/fisiopatología , Anciano , Osteoartritis de la Rodilla/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Fenómenos Biomecánicos , Elasticidad , Viscosidad , Tibia/fisiopatología , Fémur/fisiopatología , Fémur/fisiología , Anciano de 80 o más Años , Adulto , Estrés Mecánico
2.
Ann Biomed Eng ; 51(10): 2245-2257, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37332006

RESUMEN

Osteoarthritis degenerates cartilage and impairs joint function. Early intervention opportunities are missed as current diagnostic methods are insensitive to early tissue degeneration. We investigated the capability of visible light-near-infrared spectroscopy (Vis-NIRS) to differentiate normal human cartilage from early osteoarthritic one. Vis-NIRS spectra, biomechanical properties and the state of osteoarthritis (OARSI grade) were quantified from osteochondral samples harvested from different anatomical sites of human cadaver knees. Two support vector machines (SVM) classifiers were developed based on the Vis-NIRS spectra and OARSI scores. The first classifier was designed to distinguish normal (OARSI: 0-1) from general osteoarthritic cartilage (OARSI: 2-5) to check the general suitability of the approach yielding an average accuracy of 75% (AUC = 0.77). Then, the second classifier was designed to distinguish normal from early osteoarthritic cartilage (OARSI: 2-3) yielding an average accuracy of 71% (AUC = 0.73). Important wavelength regions for differentiating normal from early osteoarthritic cartilage were related to collagen organization (wavelength region: 400-600 nm), collagen content (1000-1300 nm) and proteoglycan content (1600-1850 nm). The findings suggest that Vis-NIRS allows objective differentiation of normal and early osteoarthritic tissue, e.g., during arthroscopic repair surgeries.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/diagnóstico por imagen , Espectroscopía Infrarroja Corta , Articulación de la Rodilla/diagnóstico por imagen , Colágeno
3.
Acta Biomater ; 134: 252-260, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34365039

RESUMEN

The lateral resolution of infrared spectroscopy has been inadequate for accurate biochemical characterization of the cell microenvironment, a region regulating biochemical and biomechanical signals to cells. In this study, we demonstrate the capacity of a high-resolution Fourier transform infrared microspectroscopy (HR-FTIR-MS) to characterize the collagen content of this region. Specifically, we focus on the collagen content in the cartilage cell (chondrocyte) microenvironment of healthy and osteoarthritic (OA) cartilage. Human tibial cartilage samples (N = 28) were harvested from 7 cadaveric donors and graded for OA severity (healthy, early OA, advanced OA). HR-FTIR-MS was used to analyze the collagen content of the chondrocyte microenvironment of five distinct zones across the tissue depth. HR-FTIR-MS successfully showed collagen content distribution across chondrocytes and their environment. In zones 2 and 3 (10 - 50% of the tissue thickness), we observed that collagen content was smaller (P < 0.05) in early OA compared to the healthy tissue in the vicinity of cells (pericellular region). The collagen content loss was extended to the extracellular matrix in advanced OA tissue. No significant differences in the collagen content of the chondrocyte microenvironment were observed between the groups in the most superficial (0-10%) and deep zones (50-100%). HR-FTIR-MS revealed collagen loss in the early OA cartilage pericellular region before detectable changes in the extracellular matrix in advanced OA. HR-FTIR-MS-based compositional assessment enables a better understanding of OA-related changes in tissues. This technique can be used to identify new disease mechanisms enabling better intervention strategies. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is the most common degenerative joint disease causing pain and disability. While significant progress has been made in OA research, OA pathogenesis is still poorly understood and current OA treatments are mainly palliative. This study demonstrates that high-resolution FTIR microspectroscopy (HR-FTIR-MS) can characterize OA-induced compositional changes in the cell microenvironment (pericellular matrix) during the early disease stages before tissue changes in the extracellular matrix become apparent. This technique may further enable the identification of new OA mechanisms and improve our current understanding of OA pathogenesis, thus, enabling the development of better treatment methods.


Asunto(s)
Cartílago Articular , Microambiente Celular , Condrocitos , Colágeno , Matriz Extracelular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...