Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 183: 143-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38548410

RESUMEN

Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.


Asunto(s)
Leucocitos Mononucleares , Neoplasias , Humanos , Epítopos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T CD8-positivos
2.
BMJ Open ; 14(3): e077613, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503417

RESUMEN

INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) and paediatric high-grade glioma (pHGG) are aggressive glial tumours, for which conventional treatment modalities fall short. Dendritic cell (DC)-based immunotherapy is being investigated as a promising and safe adjuvant therapy. The Wilms' tumour protein (WT1) is a potent target for this type of antigen-specific immunotherapy and is overexpressed in DIPG and pHGG. Based on this, we designed a non-randomised phase I/II trial, assessing the feasibility and safety of WT1 mRNA-loaded DC (WT1/DC) immunotherapy in combination with conventional treatment in pHGG and DIPG. METHODS AND ANALYSIS: 10 paediatric patients with newly diagnosed or pretreated HGG or DIPG were treated according to the trial protocol. The trial protocol consists of leukapheresis of mononuclear cells, the manufacturing of autologous WT1/DC vaccines and the combination of WT1/DC-vaccine immunotherapy with conventional antiglioma treatment. In newly diagnosed patients, this comprises chemoradiation (oral temozolomide 90 mg/m2 daily+radiotherapy 54 Gy in 1.8 Gy fractions) followed by three induction WT1/DC vaccines (8-10×106 cells/vaccine) given on a weekly basis and a chemoimmunotherapy booster phase consisting of six 28-day cycles of oral temozolomide (150-200 mg/m2 on days 1-5) and a WT1/DC vaccine on day 21. In pretreated patients, the induction and booster phase are combined with best possible antiglioma treatment at hand. Primary objectives are to assess the feasibility of the production of mRNA-electroporated WT1/DC vaccines in this patient population and to assess the safety and feasibility of combining conventional antiglioma treatment with the proposed immunotherapy. Secondary objectives are to investigate in vivo immunogenicity of WT1/DC vaccination and to assess disease-specific and general quality of life. ETHICS AND DISSEMINATION: The ethics committee of the Antwerp University Hospital and the University of Antwerp granted ethics approval. Results of the clinical trial will be shared through publication in a peer-reviewed journal and presentations at conferences. TRIAL REGISTRATION NUMBER: NCT04911621.


Asunto(s)
Vacunas contra el Cáncer , Glioma Pontino Intrínseco Difuso , Glioma , Neoplasias Renales , Vacunas , Tumor de Wilms , Humanos , Niño , Proteínas WT1/metabolismo , Temozolomida/uso terapéutico , Glioma Pontino Intrínseco Difuso/metabolismo , Bélgica , Calidad de Vida , Glioma/terapia , Glioma/patología , Tumor de Wilms/metabolismo , Inmunoterapia/métodos , Células Dendríticas , ARN Mensajero , Vacunas contra el Cáncer/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase I como Asunto
3.
J Hematol Oncol ; 17(1): 8, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38331849

RESUMEN

BACKGROUND: It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies. Moreover, CD70 is also expressed on cancer-associated fibroblasts (CAFs), another roadblock for treatment efficacy in CRC and PDAC. We explored the therapeutic potential of CD70 as target for CAR natural killer (NK) cell therapy in CRC, PDAC, focusing on tumor cells and CAFs, and lymphoma. METHODS: RNA-seq data and immunohistochemical analysis of patient samples were used to explore CD70 expression in CRC and PDAC patients. In addition, CD70-targeting CAR NK cells were developed to assess cytotoxic activity against CD70+ tumor cells and CAFs, and the effect of cytokine stimulation on their efficacy was evaluated. The in vitro functionality of CD70-CAR NK cells was investigated against a panel of tumor and CAF cell lines with varying CD70 expression. Lymphoma-bearing mice were used to validate in vivo potency of CD70-CAR NK cells. Lastly, to consider patient variability, CD70-CAR NK cells were tested on patient-derived organoids containing CAFs. RESULTS: In this study, we identified CD70 as a target for tumor cells and CAFs in CRC and PDAC patients. Functional evaluation of CD70-directed CAR NK cells indicated that IL-15 stimulation is essential to obtain effective elimination of CD70+ tumor cells and CAFs, and to improve tumor burden and survival of mice bearing CD70+ tumors. Mechanistically, IL-15 stimulation resulted in improved potency of CD70-CAR NK cells by upregulating CAR expression and increasing secretion of pro-inflammatory cytokines, in a mainly autocrine or intracellular manner. CONCLUSIONS: We disclose CD70 as an attractive target both in hematological and solid tumors. IL-15 armored CAR NK cells act as potent effectors to eliminate these CD70+ cells. They can target both tumor cells and CAFs in patients with CRC and PDAC, and potentially other desmoplastic solid tumors.


Asunto(s)
Fibroblastos Asociados al Cáncer , Linfoma , Humanos , Animales , Ratones , Citotoxicidad Inmunológica , Interleucina-15/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales , Inmunoterapia Adoptiva/métodos , Linfoma/metabolismo , Citocinas/metabolismo , Ligando CD27
4.
STAR Protoc ; 4(1): 102112, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853667

RESUMEN

To avoid mispairing between native and introduced T cell receptors (TCRs) and to prevent graft-versus-host disease in allogeneic T cell therapies, TCRα and TCRß chains of native TCRs are knocked out via CRISPR-Cas9. We demonstrate the isolation and activation of CD8+ T cells followed by electroporation of T cells with in vitro transcribed eSpCas9(1.1)-P2A-EGFP mRNA and single-guide RNAs targeting the TCRα and TCRß constant regions. We then describe a flow cytometric analysis to determine TCR knockout efficiency.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T alfa-beta , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T CD8-positivos/metabolismo , ARN , Sistemas CRISPR-Cas/genética , Electroporación , Receptores de Antígenos de Linfocitos T/genética
5.
STAR Protoc ; 4(1): 102053, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853720

RESUMEN

Wilms' tumor protein 1 (WT1) is a tumor-associated antigen overexpressed in various cancers. As a self-antigen, negative selection reduces the number of WT1-specific T cell receptors (TCRs). Here, we provide a protocol to generate WT137-45-specific TCRs using healthy human peripheral blood mononuclear cells. We describe the expansion of WT1-specific T cell clones by two consecutive in vitro stimulations with autologous WT137-45-pulsed dendritic cells and peripheral blood lymphocytes. We then detail the detection with human leukocyte antigen/WT137-45 tetramers.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Epítopos , Leucocitos Mononucleares , Linfocitos T Citotóxicos , Tumor de Wilms/metabolismo , Neoplasias Renales/metabolismo
6.
Vaccine ; 41(10): 1657-1667, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746739

RESUMEN

BACKGROUND: Inactivated trivalent poliovirus vaccine (IPV) induces humoral immunity, which protects against paralytic poliomyelitis but does not induce sufficient mucosal immunity to block intestinal infection. We assessed the intestinal immunity in healthy adults in Belgium conferred by a co-formulation of IPV with the mucosal adjuvant double mutant Labile Toxin (dmLT) derived from Escherichia coli. METHODS: Healthy fully IPV-vaccinated 18-45-year-olds were randomly allocated to three groups: on Day 1 two groups received one full dose of IPV (n = 30) or IPV + dmLT (n = 30) in a blinded manner, and the third received an open-label dose of bivalent live oral polio vaccine (bOPV types 1 and 3, n = 20). All groups received a challenge dose of bOPV on Day 29. Participants reported solicited and unsolicited adverse events (AE) using study diaries. Mucosal immune responses were measured by fecal neutralization and IgA on Days 29 and 43, with fecal shedding of challenge viruses measured for 28 days. Humoral responses were measured by serum neutralizing antibody (NAb). RESULTS: Solicited and unsolicited AEs were mainly mild-to-moderate and transient in all groups, with no meaningful differences in rates between groups. Fecal shedding of challenge viruses in both IPV groups exceeded that of the bOPV group but was not different between IPV and IPV + dmLT groups. High serum NAb responses were observed in both IPV groups, alongside modest levels of fecal neutralization and IgA. CONCLUSIONS: Addition of dmLT to IPV administered intramuscularly neither affected humoral nor intestinal immunity nor decreased fecal virus shedding following bOPV challenge. The tolerability of the dose of dmLT used in this study may allow higher doses to be investigated for impact on mucosal immunity. Registered on ClinicalTrials.gov - NCT04232943.


Asunto(s)
Poliomielitis , Vacuna Antipolio de Virus Inactivados , Humanos , Adulto , Poliomielitis/prevención & control , Calor , Vacuna Antipolio Oral , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Inmunoglobulina A
7.
Clin Cancer Res ; 29(3): 635-646, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341493

RESUMEN

PURPOSE: Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. EXPERIMENTAL DESIGN: A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARS-CoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T-cell responses against SARS-CoV-2-specific S1 and S2 peptides. RESULTS: Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95-2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48-1,977.46)]. However, homologous-boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS: In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad Celular , Inmunoglobulina G , Neoplasias/terapia , Estudios Prospectivos , SARS-CoV-2 , Vacunación
8.
Front Immunol ; 13: 734256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250967

RESUMEN

Dendritic cell (DC) vaccines have proven to be a valuable tool in cancer immune therapy. With several DC vaccines being currently tested in clinical trials, knowledge about their therapeutic value has been significantly increased in the past decade. Despite their established safety, it has become clear that objective clinical responses are not yet robust enough, requiring further optimization. Improvements of this advanced therapy medicinal product encompass, among others, regulating their immune stimulating capacity by in situ gene engineering, in addition to their implementation in combination therapy regimens. Previously, we have reported on a superior monocyte-derived DC preparation, including interleukin-15, pro-inflammatory cytokines and immunological danger signals in the culture process. These so-called IL-15 DCs have already proven to exhibit several favorable properties as cancer vaccine. Evolving research into mechanisms that could further modulate the immune response towards cancer, points to programmed death-1 as an important player that dampens anti-tumor immunity. Aiming at leveraging the immunogenicity of DC vaccines, we hypothesized that additional implementation of the inhibitory immune checkpoint molecules programmed death-ligand (PD-L)1 and PD-L2 in IL-15 DC vaccines would exhibit superior stimulatory potential. In this paper, we successfully implemented PD-L silencing at the monocyte stage in the 3-day IL-15 DC culture protocol resulting in substantial downregulation of both PD-L1 and PD-L2 to levels below 30%. Additionally, we validated that these DCs retain their specific characteristics, both at the level of phenotype and interferon gamma secretion. Evaluating their functional characteristics, we demonstrate that PD-L silencing does not affect the capacity to induce allogeneic proliferation. Ultimately designed to induce a durable tumor antigen-specific immune response, PD-L silenced IL-15 DCs were capable of surpassing PD-1-mediated inhibition by antigen-specific T cells. Further corroborating the superior potency of short-term IL-15 DCs, the combination of immune stimulatory components during DC differentiation and maturation with in situ checkpoint inhibition supports further clinical translation.


Asunto(s)
Antígeno B7-H1 , Vacunas contra el Cáncer , Células Dendríticas , Neoplasias , Proteína 2 Ligando de Muerte Celular Programada 1 , Antígeno B7-H1/genética , Linfocitos T CD8-positivos , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/metabolismo , Células Dendríticas/inmunología , Humanos , Interleucina-15/genética , Neoplasias/patología , Proteína 2 Ligando de Muerte Celular Programada 1/genética
9.
J Transl Med ; 20(1): 124, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287669

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has proven to be a valuable new treatment option for patients with B-cell malignancies. However, by applying selective pressure, outgrowth of antigen-negative tumor cells can occur, eventually resulting in relapse. Subsequent rescue by administration of CAR-T cells with different antigen-specificity indicates that those tumor cells are still sensitive to CAR-T treatment and points towards a multi-target strategy. Due to their natural tumor sensitivity and highly cytotoxic nature, natural killer (NK) cells are a compelling alternative to T cells, especially considering the availability of an off-the-shelf unlimited supply in the form of the clinically validated NK-92 cell line. METHODS: Given our goal to develop a flexible system whereby the CAR expression repertoire of the effector cells can be rapidly adapted to the changing antigen expression profile of the target cells, electrotransfection with CD19-/BCMA-CAR mRNA was chosen as CAR loading method in this study. We evaluated the functionality of mRNA-engineered dual-CAR NK-92 against tumor B-cell lines and primary patient samples. In order to test the clinical applicability of the proposed cell therapy product, the effect of irradiation on the proliferative rate and functionality of dual-CAR NK-92 cells was investigated. RESULTS: Co-electroporation of CD19 and BMCA CAR mRNA was highly efficient, resulting in 88.1% dual-CAR NK-92 cells. In terms of CD107a degranulation, and secretion of interferon (IFN)-γ and granzyme B, dual-CAR NK-92 significantly outperformed single-CAR NK-92. More importantly, the killing capacity of dual-CAR NK-92 exceeded 60% of single and dual antigen-expressing cell lines, as well as primary tumor cells, in a 4h co-culture assay at low effector to target ratios, matching that of single-CAR counterparts. Furthermore, our results confirm that dual-CAR NK-92 irradiated with 10 Gy cease to proliferate and are gradually cleared while maintaining their killing capacity. CONCLUSIONS: Here, using the clinically validated NK-92 cell line as a therapeutic cell source, we established a readily accessible and flexible platform for the generation of highly functional dual-targeted CAR-NK cells.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Receptores Quiméricos de Antígenos , Antígeno de Maduración de Linfocitos B/metabolismo , Citotoxicidad Inmunológica , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo
10.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074048

RESUMEN

Antigen recognition through the T cell receptor (TCR) αß heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRß repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRß sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination.


Immune cells called CD4 T cells help the body build immunity to infections caused by bacteria and viruses, or after vaccination. Receptor proteins on the outside of the cells recognize pathogens, foreign molecules called antigens, or vaccine antigens. Vaccine antigens are usually inactivated bacteria or viruses, or fragments of these pathogens. After recognizing an antigen, CD4 T cells develop into memory CD4 T cells ready to defend against future infections with the pathogen. People who have never been exposed to a pathogen, or have never been vaccinated against it, may nevertheless have preexisting memory cells ready to defend against it. This happens because CD4 T cells can recognize multiple targets, which enables the immune system to be ready to defend against both new and familiar pathogens. Elias, Meysman, Bartholomeus et al. wanted to find out whether having preexisting memory CD4 T cells confers an advantage for vaccine-induced immunity. Thirty-four people who were never exposed to hepatitis B or vaccinated against it participated in the study. These individuals provided blood samples before vaccination, with 2 doses of the hepatitis B vaccine, and at 3 time points afterward. Using next generation immune sequencing and machine learning techniques, Elias et al. analyzed the individuals' memory CD4 T cells before and after vaccination. The experiments showed that preexisting memory CD4 T cells may determine vaccination outcomes, and people with more preexisting memory cells develop quicker and stronger immunity after vaccination against hepatitis B. This information may help scientists to better understand how people develop immunity to pathogens. It may guide them develop better vaccines or predict who will develop immunity after vaccination.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Hepatitis B/prevención & control , Adulto , Vacunas contra Hepatitis B , Humanos , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta , Vacunación , Adulto Joven
11.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34572745

RESUMEN

Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.

12.
Front Immunol ; 12: 668962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34385999

RESUMEN

Neuromuscular blocking agents (NMBAs) like atracurium and rocuronium as well as fluoroquinolones (FQs) cause mast cell-mediated anaphylaxis by activating Mas-related G protein-coupled receptor X2 (MRGPRX2), but many questions remain unanswered. Here, we address three of them, namely whether primary human mast cells show similar activation by these drugs as murine mast cells and mast cell lines, how sugammadex protects from atracurium-induced MRGPRX2-mediated mast cell activation, and why some but not all patients treated with rocuronium develop anaphylaxis. We used peripheral blood-derived cultured mast cells from healthy donors and patients, assessed mast cell activation and degranulation by quantifying intracellular calcium and CD63 expression, respectively, and made use of MRGPRX2-silencing, via electroporation with Dicer-substrate small interfering RNAs, and single cell flow cytometric analyses. Atracurium, ciprofloxacin, and levofloxacin activated and degranulated primary human mast cells, but only MRGPRX2-positive and not MRGPRX2-negative or -silenced mast cells. Sugammadex attenuated the atracurium-induced and MRGPRX2-mediated activation and degranulation of human mast cells by reducing free atracurium levels. The mast cells of patients with IgE-independent anaphylaxis to rocuronium were similar, in their MRGPRX2 expression and function, to those of patients with IgE-mediated anaphylaxis. These findings further improve our understanding of the role and relevance of MRGPRX2-driven mast cell activation in anaphylactic reactions to NMBAs and FQs and may help to improve their prediction, prevention, and treatment.


Asunto(s)
Anafilaxia/inducido químicamente , Antibacterianos/toxicidad , Degranulación de la Célula/efectos de los fármacos , Hipersensibilidad a las Drogas/etiología , Mastocitos/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuromusculares no Despolarizantes/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Anafilaxia/inmunología , Anafilaxia/metabolismo , Atracurio/toxicidad , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Ciprofloxacina/toxicidad , Hipersensibilidad a las Drogas/inmunología , Hipersensibilidad a las Drogas/metabolismo , Humanos , Inmunoglobulina E/inmunología , Levofloxacino/toxicidad , Mastocitos/inmunología , Mastocitos/metabolismo , Proteínas del Tejido Nervioso/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/genética , Rocuronio/toxicidad , Factores de Tiempo
13.
Pharmaceutics ; 13(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809779

RESUMEN

Messenger RNA (mRNA) electroporation is a powerful tool for transient genetic modification of cells. This non-viral method of genetic engineering has been widely used in immunotherapy. Electroporation allows fine-tuning of transfection protocols for each cell type as well as introduction of multiple protein-coding mRNAs at once. As a pioneering group in mRNA electroporation, in this review, we provide an expert overview of the ins and outs of mRNA electroporation, discussing the different parameters involved in mRNA electroporation as well as the production of research-grade and production and application of clinical-grade mRNA for gene transfer in the context of cell-based immunotherapies.

14.
J Hematol Oncol ; 13(1): 164, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272302

RESUMEN

BACKGROUND: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T-cell therapy is an emerging treatment option for multiple myeloma. The aim of this systematic review and meta-analysis was to determine its safety and clinical activity and to identify factors influencing these outcomes. METHODS: We performed a database search using the terms "BCMA," "CAR," and "multiple myeloma" for clinical studies published between 01/01/2015 and 01/01/2020. The methodology is further detailed in PROSPERO (CRD42020125332). RESULTS: Twenty-three different CAR-T-cell products have been used so far in 640 patients. Cytokine release syndrome was observed in 80.3% (69.0-88.2); 10.5% (6.8-16.0) had neurotoxicity. A higher neurotoxicity rate was reported in studies that included more heavily pretreated patients: 19.1% (13.3-26.7; I2 = 45%) versus 2.8% (1.3-6.1; I2 = 0%) (p < 0.0001). The pooled overall response rate was 80.5% (73.5-85.9); complete responses (CR) were observed in 44.8% (35.3-54.6). A pooled CR rate of 71.9% (62.8-79.6; I2 = 0%) was noted in studies using alpaca/llama-based constructs, whereas it was only 18.0% (6.5-41.1; I2 = 67%) in studies that used retroviral vectors for CAR transduction. Median progression-free survival (PFS) was 12.2 (11.4-17.4) months, which compared favorably to the expected PFS of 1.9 (1.5-3.7) months (HR 0.14; p < 0.0001). CONCLUSIONS: Although considerable toxicity was observed, BCMA-targeted CAR-T-cell therapy is highly efficacious even in advanced multiple myeloma. Subgroup analysis confirmed the anticipated inter-study heterogeneity and identified potential factors contributing to safety and efficacy. The results of this meta-analysis may assist the future design of CAR-T-cell studies and lead to optimized BCMA CAR-T-cell products.


Asunto(s)
Antígeno de Maduración de Linfocitos B/inmunología , Inmunoterapia Adoptiva/efectos adversos , Mieloma Múltiple/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/inmunología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/inmunología , Supervivencia sin Progresión , Receptores Quiméricos de Antígenos/inmunología , Resultado del Tratamiento
15.
Cells ; 9(7)2020 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708366

RESUMEN

Over the past decades, adoptive transfer of T cells has revolutionized cancer immunotherapy. In particular, T-cell receptor (TCR) engineering of T cells has marked important milestones in developing more precise and personalized cancer immunotherapies. However, to get the most benefit out of this approach, understanding the role that TCR affinity, avidity, and functional avidity play on how TCRs and T cells function in the context of tumor-associated antigen (TAA) recognition is vital to keep generating improved adoptive T-cell therapies. Aside from TCR-related parameters, other critical factors that govern T-cell activation are the effect of TCR co-receptors on TCR-peptide-major histocompatibility complex (pMHC) stabilization and TCR signaling, tumor epitope density, and TCR expression levels in TCR-engineered T cells. In this review, we describe the key aspects governing TCR specificity, T-cell activation, and how these concepts can be applied to cancer-specific TCR redirection of T cells.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Neoplasias/inmunología , Ingeniería de Proteínas , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Animales , Epítopos/inmunología , Humanos
16.
Bone Marrow Transplant ; 55(12): 2308-2318, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32528120

RESUMEN

Acute myeloid leukemia (AML) is an immune-susceptible malignancy, as demonstrated by its responsiveness to allogeneic stem cell transplantation (alloSCT). However, by employing inhibitory signaling pathways, including PD-1/PD-L1, leukemia cells suppress T cell-mediated immune attack. Notably, impressive clinical efficacy has been obtained with PD-1/PD-L1 blocking antibodies in cancer patients. Yet, these systemic treatments are often accompanied by severe toxicity, especially after alloSCT. Here, we investigated RNA interference technology as an alternative strategy to locally interfere with PD-1/PD-L1 signaling in AML. We demonstrated efficient siRNA-mediated PD-L1 silencing in HL-60 and patients' AML cells. Importantly, WT1-antigen T cell receptor+ PD-1+ 2D3 cells showed increased activation toward PD-L1 silenced WT1+ AML. Moreover, PD-L1 silenced AML cells significantly enhanced the activation, degranulation, and IFN-γ production of minor histocompatibility antigen-specific CD8+ T cells. Notably, PD-L1 silencing was equally effective as PD-1 antibody blockade. Together, our study demonstrates that PD-L1 silencing may be an effective strategy to augment AML immune-susceptibility. This provides rationale for further development of targeted approaches to locally interfere with immune escape mechanisms in AML, thereby minimizing severe toxicity. In combination with alloSCT and/or adoptive T cell transfer, this strategy could be very appealing to boost graft-versus-leukemia immunity and improve outcome in AML patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Antígeno B7-H1/genética , Linfocitos T CD8-positivos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , ARN Interferente Pequeño/genética
17.
Cancers (Basel) ; 12(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31972992

RESUMEN

The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms' tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.

18.
Cancers (Basel) ; 11(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635070

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-ß) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.

19.
Cancers (Basel) ; 11(9)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546858

RESUMEN

Dendritic cell-based and other vaccination strategies that use the patient's own immune system for the treatment of cancer are gaining momentum. Most studies of therapeutic cancer vaccination have been performed in adults. However, since cancer is one of the leading causes of death among children past infancy in the Western world, the hope is that this form of active specific immunotherapy can play an important role in the pediatric population as well. Since children have more vigorous and adaptable immune systems than adults, therapeutic cancer vaccines are expected to have a better chance of creating protective immunity and preventing cancer recurrence in pediatric patients. Moreover, in contrast to conventional cancer treatments such as chemotherapy, therapeutic cancer vaccines are designed to specifically target tumor cells and not healthy cells or tissues. This reduces the likelihood of side effects, which is an important asset in this vulnerable patient population. In this review, we present an overview of the different therapeutic cancer vaccines that have been studied in the pediatric population, with a main focus on dendritic cell-based strategies. In addition, new approaches that are currently being investigated in clinical trials are discussed to provide guidance for further improvement and optimization of pediatric cancer vaccines.

20.
Vaccines (Basel) ; 7(3)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394834

RESUMEN

Dendritic cell [DC] vaccines can induce durable clinical responses, at least in a fraction of previously treated, late stage cancer patients. Several preclinical studies suggest that shielding programmed death-ligand 1 [PD-L1] on the DC surface may be an attractive strategy to extend such clinical benefits to a larger patient population. In this study, we evaluated the use of single domain antibody [sdAb] K2, a high affinity, antagonistic, PD-L1 specific sdAb, for its ability to enhance DC mediated T-cell activation and benchmarked it against the use of the monoclonal antibodies [mAbs], MIH1, 29E.2A3 and avelumab. Similar to mAbs, sdAb K2 enhanced antigen-specific T-cell receptor signaling in PD-1 positive (PD-1pos) reporter cells activated by DCs. We further showed that the activation and function of antigen-specific CD8 positive (CD8pos) T cells, activated by DCs, was enhanced by inclusion of sdAb K2, but not mAbs. The failure of mAbs to enhance T-cell activation might be explained by their low efficacy to bind PD-L1 on DCs when compared to binding of PD-L1 on non-immune cells, whereas sdAb K2 shows high binding to PD-L1 on immune as well as non-immune cells. These data provide a rationale for the inclusion of sdAb K2 in DC-based immunotherapy strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA