RESUMEN
High-throughput DNA sequencing has accelerated the discovery of disease-causing genetic variants, yet only in 10-40% of cases yield a genetic diagnosis. Increased implementation of genome sequencing has enabled a deeper exploration of the noncoding genome and recognition of noncoding variants as major contributors to disease. In a recent study, we identified a deep intronic variant in the AutoImmune REgulator (AIRE) gene (c.1504-818 G>A) as the cause of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a life-threatening monogenic autoimmune disorder most often caused by biallelic AIRE defects. This deep intronic variant disrupts normal splicing AIRE , causing pseudoexon inclusion and altered protein function. By developing an antisense oligonucleotide (ASO) targeting the pseudoexon sequence, we restored normal AIRE transcript in vitro, thereby revealing a potential genotype-specific candidate treatment. Our study illustrates key aspects of intronic variant detection, validation, and candidate ASO development. Herein, we briefly highlight the growing potential of ASO-based therapies for deep intronic variants, addressing the unmet need of personalized, genotype-specific therapies in diseases lacking curative options.
RESUMEN
The thymus is crucial for optimal T cell development by facilitating the generation and selection of a diverse repertoire of T cells that can recognize foreign antigens while promoting tolerance to self-antigens. A number of inborn errors of immunity (IEI) causing complete or partial defects in thymic development (athymia) and/or impaired thymic function have been increasingly recognized that manifest clinically with a combination of life-threatening infections, severe multiorgan autoimmunity, and/or cardiac, cranio-facial, ectodermal, and endocrine abnormalities. The introduction of newborn screening programs and the advent of thymic transplantation show promise for early detection and improving the outcomes of patients with certain thymic IEI. Herein, we discuss our current understanding of the genetics, immunopathogenesis, diagnosis, and treatment of IEI that impair thymic development and/or function.
RESUMEN
Hematopoiesis is a highly dynamical and stochastic process, challenging our understanding of homeostasis. Clinical studies of leukemia or neutropenic patients revealed that multiple blood cell types fluctuate spontaneously with large yet regular oscillations of their frequencies. Yet the stability of hematopoiesis in healthy individuals remains understudied. Here we report on both cross-sectional and longitudinal studies of dozens of healthy mice, through high-dimensional mass and spectral cytometry, to understand hematopoiesis at homeostasis. We found that all cell types in the bone marrow, blood, and spleen exhibit large variations of frequency (e.g., with coefficients of variation larger than 1). While the frequencies of individual cell type fluctuate, there existed extensive and robust correlations/anti-correlations between cell types, exemplified by the pronounced anti-correlation between blood neutrophils and B cells. Through longitudinal study of the blood content of healthy mice, we found that leukocyte fluctuations are ergodic yet subject to chaotic behaviors characterized by a broad spectrum of characteristic timescales. We then built a minimal mathematical model to capture these dynamical features of hematopoiesis (fluctuations, correlations, and chaos) and explain how the accumulation of B cells (e.g. during lymphoma development) would transition the blood cell dynamics from chaos to oscillations (as observed clinically). Finally, we demonstrated the ubiquity and consistency of the correlated fluctuations in hematopoiesis by comparing mouse cohorts of different genetic backgrounds and ages. To conclude, we discuss how study of hematopoiesis must factor in the newfound chaotic dynamics at homeostasis, towards better modeling the responses to perturbations.
RESUMEN
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact ß 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
RESUMEN
This Pillars of Immunology article is a commentary on "Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis," a pivotal article written by H. R. Conti, F. Shen, N. Nayyar, E. Stocum, J. N. Sun, M. J. Lindemann, A. W. Ho, J. H. Hai, J. J . Yu, J. W. Jung, S. G. Filler, P. Masso-Welch, M. Edgerton, and S. L. Gaffen, and published in The Journal of Experimental Medicine in 2009. https://doi.org/10.1084/jem.20081463.
Asunto(s)
Candidiasis Bucal , Interleucina-17 , Interleucina-17/inmunología , Candidiasis Bucal/inmunología , Humanos , Animales , Células Th17/inmunología , Receptores de Interleucina-17/inmunología , Transducción de Señal/inmunología , RatonesRESUMEN
Candida spp. are members of the human mucosal microbiota that can cause opportunistic diseases ranging from superficial infections to life-threatening invasive candidiasis. In humans, the most common infection caused by Candida spp. is vulvovaginal candidiasis (VVC), which affects >70% of women at least once in their lifetime. Of those women, â¼5%-10% develop recurrent VVC (RVVC). In this review, we summarize our current understanding of the host and fungal factors that contribute to susceptibility to VVC and RVVC. We synthesize key findings that support the notion that disease symptoms are driven by neutrophil-associated dysfunction and immunopathology and describe how antifungal immune mechanisms in the vagina are distinct from other mucosal barrier sites. Finally, we highlight key, unanswered research areas within the field that can help us better understand the immunopathogenesis of this infection and facilitate the development of novel preventive, therapeutic, and/or vaccination strategies to combat these common, poorly understood diseases.
Asunto(s)
Candida , Candidiasis Vulvovaginal , Recurrencia , Vagina , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/inmunología , Humanos , Femenino , Vagina/microbiología , Vagina/inmunología , Candida/patogenicidad , Candida/inmunología , Interacciones Microbiota-Huesped/inmunología , Neutrófilos/inmunología , Interacciones Huésped-Patógeno/inmunología , Animales , MicrobiotaRESUMEN
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
RESUMEN
Mucosal barrier integrity is vital for homeostasis with commensal organisms while preventing pathogen invasion. We unexpectedly found that fungal-induced immunosurveillance enhances resistance to fungal outgrowth and tissue invasion by remodeling the oral mucosal epithelial barrier in mouse models of adult and neonatal Candida albicans colonization. Epithelial subset expansion and tissue remodeling were dependent on interleukin-22 (IL-22) and signal transducer and activator of transcription 3 (STAT3) signaling, through a non-canonical receptor complex composed of glycoprotein 130 (gp130) coupled with IL-22RA1 and IL-10RB. Immunosurveillance-induced epithelial remodeling was restricted to the oral mucosa, whereas barrier architecture was reset once fungal-specific immunity developed. Collectively, these findings identify fungal-induced transient mucosal remodeling as a critical determinant of resistance to mucosal fungal infection during early stages of microbial colonization.
RESUMEN
Fungi play critical roles in the homeostasis of ecosystems globally and have emerged as significant causes of an expanding repertoire of devastating diseases in plants, animals, and humans. In this Commentary, we highlight the importance of fungal pathogens and argue for concerted research efforts to enhance understanding of fungal virulence, antifungal immunity, novel drug targets, antifungal resistance, and the mycobiota to improve human health.
Asunto(s)
Hongos , Micosis , Animales , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica , Hongos/patogenicidad , Micosis/tratamiento farmacológico , Micosis/inmunología , Micosis/microbiología , VirulenciaAsunto(s)
Autoanticuerpos , Encefalomielitis , Rigidez Muscular , Mioclonía , Receptores de Glicina , Humanos , Rigidez Muscular/etiología , Rigidez Muscular/diagnóstico , Rigidez Muscular/inmunología , Encefalomielitis/inmunología , Encefalomielitis/diagnóstico , Encefalomielitis/complicaciones , Mioclonía/etiología , Mioclonía/diagnóstico , Mioclonía/inmunología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Receptores de Glicina/inmunología , Poliendocrinopatías Autoinmunes/complicaciones , Poliendocrinopatías Autoinmunes/diagnóstico , Poliendocrinopatías Autoinmunes/inmunología , Masculino , Femenino , AdultoRESUMEN
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a life-threatening monogenic autoimmune disorder primarily caused by biallelic deleterious variants in the autoimmune regulator (AIRE) gene. We prospectively evaluated 104 patients with clinically diagnosed APECED syndrome and identified 17 patients (16%) from 14 kindreds lacking biallelic AIRE variants in exons or flanking intronic regions; 15 had Puerto Rican ancestry. Through whole-genome sequencing, we identified a deep intronic AIRE variant (c.1504-818 G>A) cosegregating with the disease in all 17 patients. We developed a culture system of AIRE-expressing primary patient monocyte-derived dendritic cells and demonstrated that c.1504-818 G>A creates a cryptic splice site and activates inclusion of a 109-base pair frame-shifting pseudoexon. We also found low-level AIRE expression in patient-derived lymphoblastoid cell lines (LCLs) and confirmed pseudoexon inclusion in independent extrathymic AIRE-expressing cell lines. Through protein modeling and transcriptomic analyses of AIRE-transfected human embryonic kidney 293 and thymic epithelial cell 4D6 cells, we showed that this variant alters the carboxyl terminus of the AIRE protein, abrogating its function. Last, we developed an antisense oligonucleotide (ASO) that reversed pseudoexon inclusion and restored the normal AIRE transcript sequence in LCLs. Thus, our findings revealed c.1504-818 G>A as a founder APECED-causing AIRE variant in the Puerto Rican population and uncovered pseudoexon inclusion as an ASO-reversible genetic mechanism underlying APECED.
Asunto(s)
Proteína AIRE , Exones , Intrones , Oligonucleótidos Antisentido , Poliendocrinopatías Autoinmunes , Factores de Transcripción , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Secuencia de Bases , Línea Celular , Exones/genética , Intrones/genética , Mutación/genética , Linaje , Poliendocrinopatías Autoinmunes/genética , Empalme del ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Prototheca wickerhamii is a rare cause of cutaneous and systemic infection that requires long treatment courses with potentially toxic medications. We describe a patient with cutaneous protothecosis refractory to triazole monotherapy who experienced clinical and radiographic improvement with the novel oral lipid nanocrystal formulation of amphotericin B without experiencing toxicity.
RESUMEN
In order to assess homeostatic mechanisms in the lung after COVID-19, changes in the protein signature of bronchoalveolar lavage from 45 patients with mild to moderate disease at three phases (acute, recovery, and convalescent) are evaluated over a year. During the acute phase, inflamed and uninflamed phenotypes are characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators decline and clinical symptoms abate. However, at 9 months, quantified radiographic abnormalities resolve in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein-kinin, coagulation, and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias.
Asunto(s)
COVID-19 , Pulmón , Proteoma , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Proteoma/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Estudios Longitudinales , Adulto , Líquido del Lavado Bronquioalveolar/química , AncianoRESUMEN
BACKGROUND: Thymoma presents with several autoimmune manifestations and is associated with secondary autoimmune regulator (AIRE) deficiency. Pneumonitis has recently been described as an autoimmune manifestation associated with thymoma presenting with similar clinical, radiographic, histological, and autoantibody features as seen in patients with inherited AIRE deficiency who suffer from Autoimmune PolyEndocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED) syndrome. OBJECTIVES: To treat two patients with biopsy-proven thymoma-associated pneumonitis with lymphocyte-directed immunomodulation. METHODS: Two patients with thymoma were enrolled on IRB-approved protocols at the NIH Clinical Center. We performed history and physical examination; laboratory, radiographic, histologic and pulmonary function evaluations; and measurement of the lung-directed autoantibodies KCNRG and BPIFB1 prior to and at 1- and 6-months following initiation of lymphocyte-directed immunomodulation with azathioprine with or without rituximab. RESULTS: Combination T- and B-lymphocyte-directed immunomodulation resulted in improvement of clinical, functional, and radiographic parameters at 6-month follow-up evaluations in both patients with sustained remission up to 12-36 months following treatment initiation. CONCLUSION: Lymphocyte-directed immunomodulation remitted autoimmune pneumonitis in two patients with thymoma.
Asunto(s)
Inmunomodulación , Timoma , Humanos , Timoma/inmunología , Timoma/complicaciones , Timoma/diagnóstico , Femenino , Masculino , Rituximab/uso terapéutico , Autoanticuerpos/inmunología , Persona de Mediana Edad , Neoplasias del Timo/inmunología , Neoplasias del Timo/complicaciones , Neoplasias del Timo/diagnóstico , Neumonía/etiología , Neumonía/inmunología , Neumonía/diagnóstico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/etiología , Adulto , Azatioprina/uso terapéutico , Linfocitos B/inmunología , Resultado del Tratamiento , Linfocitos T/inmunologíaRESUMEN
Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.
Asunto(s)
Dermatitis , Mutación con Ganancia de Función , Inflamación , Factor de Transcripción STAT3 , Piel , Células Th17 , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos/inmunología , Dermatitis/genética , Dermatitis/inmunología , Dermatitis/patología , Imiquimod/farmacología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-22/genética , Interleucina-22/metabolismo , Ratones Endogámicos C57BL , Piel/inmunología , Piel/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Células Th17/inmunologíaRESUMEN
Candida auris, an emerging multidrug-resistant fungal pathogen, predominately colonizes the human skin long term leading to subsequent life-threatening invasive infections. Fungal morphology is believed to play a critical role in modulating mucocutaneous antifungal immunity. In this study, we used an intradermal mouse model of C. auris infection to examine fungal colonization and the associated innate and adaptive immune response to yeast and filamentous C. auris strains. Our results indicate that mice infected with a filamentous C. auris had significantly decreased fungal load compared to mice infected with the yeast form. Mice infected with yeast and filamentous forms of C. auris stimulated distinct innate immune responses. Phagocytic cells (CD11b+Ly6G+ neutrophils, CD11b+Ly6Chi inflammatory monocytes, and CD11b+MHCII+CD64+ macrophages) were differentially recruited to mouse skin tissue infected with yeast and filamentous C. auris. The percentage and absolute number of interleukin 17 (IL-17) producing innate lymphoid cells, TCRγδ+, and CD4+ T cells in the skin tissue of mice infected with filamentous C. auris were significantly increased compared to the wild-type of yeast strain. Furthermore, complementation of filamentous mutant strain of C. auris (Δelm1 + ELM1) strain exhibited wild-type yeast morphology in vivo and induced comparable level of skin immune responses similar to mice infected with yeast strain. Collectively, our findings indicate that yeast and filamentous C. auris induce distinct local immune responses in the skin. The decreased fungal load observed in mouse skin infected with filamentous C. auris is associated with a potent IL-17 immune response induced by this morphotype.IMPORTANCECandida auris is a globally emerging fungal pathogen that transmits among individuals in hospitals and nursing home residents. Unlike other Candida species, C. auris predominantly colonizes and persists in skin tissue resulting in outbreaks of systemic infections. Understanding the factors that regulate C. auris skin colonization and host immune response is critical to develop novel preventive and therapeutic approaches against this emerging pathogen. We identified that yeast and filamentous forms of C. auris induce distinct skin immune responses in the skin. These findings may help explain the differential colonization and persistence of C. auris morphotypes in skin tissue. Understanding the skin immune responses induced by yeast and filamentous C. auris is important to develop novel vaccine strategies to combat this emerging fungal pathogen.
Asunto(s)
Candida auris , Modelos Animales de Enfermedad , Inmunidad Innata , Piel , Animales , Ratones , Piel/inmunología , Piel/microbiología , Candida auris/inmunología , Candida auris/genética , Femenino , Ratones Endogámicos C57BL , Inmunidad Adaptativa , Candidiasis/inmunología , Candidiasis/microbiología , Interleucina-17/inmunologíaRESUMEN
We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.
RESUMEN
Mammals are generally resistant to Mycobacterium avium complex (MAC) infections. We report here on a primary immunodeficiency disorder causing increased susceptibility to MAC infections in a canine breed. Adult Miniature Schnauzers developing progressive systemic MAC infections were related to a common founder, and pedigree analysis was consistent with an autosomal recessive trait. A genome-wide association study and homozygosity mapping using 8 infected, 9 non-infected relatives, and 160 control Miniature Schnauzers detected an associated region on chromosome 9. Whole genome sequencing of 2 MAC-infected dogs identified a codon deletion in the CARD9 gene (c.493_495del; p.Lys165del). Genotyping of Miniature Schnauzers revealed the presence of this mutant CARD9 allele worldwide, and all tested MAC-infected dogs were homozygous mutants. Peripheral blood mononuclear cells from a dog homozygous for the CARD9 variant exhibited a dysfunctional CARD9 protein with impaired TNF-α production upon stimulation with the fungal polysaccharide ß-glucan that activates the CARD9-coupled C-type lectin receptor, Dectin-1. While CARD9-deficient knockout mice are susceptible to experimental challenges by fungi and mycobacteria, Miniature Schnauzer dogs with systemic MAC susceptibility represent the first spontaneous animal model of CARD9 deficiency, which will help to further elucidate host defense mechanisms against mycobacteria and fungi and assess potential therapies for animals and humans.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Enfermedades de los Perros , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Perros , Infección por Mycobacterium avium-intracellulare/veterinaria , Infección por Mycobacterium avium-intracellulare/genética , Infección por Mycobacterium avium-intracellulare/microbiología , Complejo Mycobacterium avium/genética , Enfermedades de los Perros/genética , Enfermedades de los Perros/microbiología , Eliminación de Secuencia , Linaje , Femenino , Masculino , Secuenciación Completa del Genoma , Homocigoto , Lectinas Tipo C/genéticaRESUMEN
Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.